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Abstract.— Intimate ecological interactions, such as those between parasites and their hosts, may persist1

over long time spans, coupling the evolutionary histories of the lineages involved. Most methods that2

reconstruct the coevolutionary history of such associations make the simplifying assumption that parasites3

have a single host. Many methods also focus on congruence between host and parasite phylogenies, using4

cospeciation as the null model. However, there is an increasing body of evidence suggesting that the host5

ranges of parasites are more complex: that host ranges often include more than one host and evolve via6

gains and losses of hosts rather than through cospeciation alone. Here, we develop a Bayesian approach for7

inferring coevolutionary history based on a model accommodating these complexities. Specifically, a8

parasite is assumed to have a host repertoire, which includes both potential hosts and one or more actual9

hosts. Over time, potential hosts can be added or lost, and potential hosts can develop into actual hosts or10

vice versa. Thus, host colonization is modeled as a two-step process, which may potentially be influenced11

by host relatedness or host traits. We first explore the statistical behavior of our model by simulating12

evolution of host-parasite interactions under a range of parameters. We then use our approach,13

implemented in the program RevBayes, to infer the coevolutionary history between 34 Nymphalini14

butterfly species and 25 angiosperm families.15

(Keywords: ancestral hosts, coevolution, herbivorous insects, probabilistic modeling.)16
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Extant ecological interactions, such as those between parasites and hosts, are often the17

result of a long history of coevolution between the involved lineages (Elton 1946; Klassen 1992).18

Specialization is predominant among parasites (including parasitic herbivorous insects; Forister19

et al. 2015), but host associations are not static: they continuously evolve over time via gains and20

losses of hosts (Janz and Nylin 2008; Nylin et al. 2018). The colonization of new hosts and loss of21

old hosts not only shape the evolutionary trajectories of the interacting lineages, but can also22

have large effects at ecological timescales (Nosil 2002; Calatayud et al. 2016). These effects are23

evident, for example, with emerging infectious diseases and zoonotic diseases (Acha and Szyfres24

2003), which involve colonization of new hosts within and among groups of domesticated species25

(Subbarao et al. 1998), wildlife (Fisher et al. 2009), and humans (Hahn et al. 2000). Unraveling26

the processes underlying changes in species associations is thus key to understanding evolutionary27

and ecological phenomena at various timescales, such as the emergence of infectious diseases,28

community assembly, and parasite diversification (Hoberg and Brooks 2015).29

Many methods developed to study historical associations focus on congruence between30

host and parasite phylogenies (Brooks 1979; Huelsenbeck et al. 1997; de Vienne et al. 2013). Such31

methods largely fall into two main classes of cophylogenetic approaches: (1) topology- and32

distance-based methods, which estimate the congruence between two phylogenies (Legendre et al.33

2002), and (2) event-based methods, which map the parasite phylogeny onto the host phylogeny34

using evolutionary events (Ronquist 2003). Typically, cospeciation is the null hypothesis in these35

methods, where host shifts are invoked only to explain deviations from cospeciation (de Vienne36

et al. 2013). Moreover, most of these methods do not allow ancestral parasites to be associated37

with more than one host lineage, thus failing to account for a potentially important driver of38

parasite diversification (Janz and Nylin 2008).39

An alternative approach to studying coevolving host-parasite associations is to perform40

ancestral state reconstructions of individual host taxa onto the parasite phylogeny and combine41

the ancestral host states a posteriori into inferred host ranges (e.g. Nylin et al. 2014). Even42

though this approach allows ancestral parasites to have multiple hosts, it assumes that the43
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associations between the parasite and each host evolve independently. This has a number of44

serious drawbacks. For instance, ancestral parasites may be inferred to have an unrealistically45

high number of hosts, or no host at all. Furthermore, the more narrowly circumscribed the host46

taxa are, the more likely it is that ancestral parasite lineages are reconstructed as having no47

hosts. In addition, the independence assumption causes the phylogenetic relationships among48

hosts to be ignored, meaning that the model assigns equal rates to all colonizations of new hosts49

regardless of how closely related the new host is to the current hosts being used by the parasite.50

A desirable model of host usage should therefore allow parasites to have multiple hosts,51

while also allowing for among-host (or context-dependent) effects to influence ancestral host use52

estimates and gain and loss rates in whatever manner explains the biological data best. One53

possible solution is to restate the problem of host-parasite co-evolution in terms of historical54

biogeography. For instance, the Dispersal-Extirpation-Cladogenesis (DEC) model of Ree et al.55

(2005) allows species ranges to stochastically evolve as a set of discrete areas over time through56

area gain events (dispersal), area loss events (extirpation), and cladogenetic events (range57

inheritance patterns that reflect speciational models). Although these methods are designed for58

biogeographic inference, a similar approach is clearly suitable for more realistic modeling of59

host-parasite coevolution dynamics, where colonization and loss of hosts (instead of discrete60

areas) is modeled as a continuous-time Markov process (e.g. Hardy 2017). In biogeography, the61

colonization of a new area or the disappearance from a previously occupied area is modeled as a62

binary trait: the species is either present or absent in the area. While this binary view might be63

simple but useful in biogeography, it may be too simplistic for use in the coevolution between64

hosts and parasites. For instance, it is known that butterflies can utilize a range of plants that65

they do not regularly feed on in the wild, and it has been suggested that these potential hosts66

have played an important role in the evolution of host use in butterflies, by increasing the67

variability in host use through time and across clades (Janz et al. 2016; Braga et al. 2018). This68

hypothesis can only be directly tested, however, if we explicitly model the evolution of host use as69

a two-step process, which cannot be done with the binary methods that are used today to study70
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host-parasite coevolution or biogeography.71

Here, we propose a model where a parasite is assumed to have a host repertoire, defined as72

the set of all potential and actual hosts for that parasite. In this model, the colonization of a new73

host involves two steps: first, the parasite gains the ability to use the new host (it becomes a74

potential host), and then starts actually using it in nature (it becomes an actual host). These two75

steps can be interpreted as the inclusion of the new host into the fundamental and then into the76

realized host repertoire of the parasite - analogous to fundamental and realized niche (Nylin et al.77

2018; Larose et al. 2019). Similarly, the complete loss of a host from a parasite’s realized78

repertoire involves two steps. First, it changes from an actual to a potential host, and then it is79

lost completely from the host repertoire. For example, if the geographic range of a host80

contracted to become allopatric with respect to a parasite’s geographic range, the host would81

remain as part of the fundamental repertoire until the parasite completely lost the ability to use82

the host, in which case the host would be lost from the repertoire. Even when in sympatry, the83

evolution of a new defense mechanism by the host may prevent the parasite from using that host.84

However, since host use is a complex and multidimensional trait, it is unlikely that a parasite85

loses all the machinery necessary to use a host in one single event, and it may well retain some86

ability to survive on the host. Thus, three host-parasite association states are necessary for such a87

two-step model: the host is used (actual host), the parasite has some ability to use the host but88

does not use it in nature (potential host), and the parasite cannot use the host (non-host).89

In this paper, we develop a Bayesian approach to coevolutionary inference based on such a90

model of host repertoire evolution, inspired by the previous work on similar biogeographic91

inference problems by Landis et al. (2013). The basic binary biogeographic model, when applied92

to coevolution, accommodates both multiple ancestral hosts and changes in host configurations93

over time that correspond to evolutionary changes in host lineages or host traits. We extend this94

model to also include a two-step host colonization process, such that the fundamental host95

repertoire can persist over time and affect the evolution of the realized repertoire. We have96

implemented the model in RevBayes (Höhna et al. 2016), allowing us to perform simulation as97
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well as Bayesian Markov chain Monte Carlo (MCMC) inference under the model. This Bayesian98

framework allows one to estimate the joint distribution of host gain and loss rates, the effect (if99

any) of phylogenetic distances among hosts upon host gain rates, and the historical sequences of100

evolving host repertoires among the parasites. Using simulations, we explore the statistical101

behavior of our approach, and demonstrate its empirical application with an analysis of the102

coevolution between Nymphalini butterflies and their angiosperm hosts.103

Methods104

Model description105

We are interested in modeling the evolution of ecological interactions between M extant106

parasite taxa and N host taxa, where each parasite uses one or more hosts. Rooted and107

time-calibrated phylogenetic trees describe the evolutionary relationships among the M parasite108

taxa and among the N host taxa. In this study, the trees are considered to be known without109

error. In principle, it would be straightforward for the model to accommodate phylogenetic110

uncertainty in the host or parasite trees but MCMC inference may prove challenging under such111

conditions.112

Each parasite taxon has a host repertoire, which is represented by a vector of length N113

that contains the information about which hosts the given parasite uses. The interaction between114

the m-th parasite and the n-th host is denoted xm,n. At any given time, each host taxon can115

assume one of three states with respect to a parasite lineage: xm,n is equal to 0 (non-host), 1116

(potential host), or 2 (actual host). Criteria for how to code non-host, potential host, and actual117

host states will depend on the host-parasite system under study; below, we provide criteria for118

our Nymphalini dataset that may act as guidelines. We allow all host repertoires in which the119

parasite has at least one actual host. Thus, the state space, S, includes 3N − 2N host repertoires120

for N hosts.121

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/675017doi: bioRxiv preprint first posted online Jun. 18, 2019; 

http://dx.doi.org/10.1101/675017
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here we define the transition from state 0 to state 1 as the gain of the ability to use the122

host, and the transition from state 1 to state 2 as the time when the parasite actually starts to123

use the host in nature. If we assume that gains and losses of hosts occur according to a124

continuous-time Markov chain, the probability of a given history of association between a parasite125

clade and their hosts can be easily calculated (Ree and Smith 2008). This calculation is based on a126

matrix, Q, containing the instantaneous rates of change between all pairs of host repertoires, and127

thus describing the Markov chain. Based on the Q matrix, it is possible to calculate the transition128

probability of the observed host repertoires at the tips of the parasite tree by marginalizing over129

the infinite number of histories that could produce the observed host repertoires. Unfortunately,130

computing these transition probabilities becomes intractable as the number of host repertoire131

configurations, S, grows large. Modeling host repertoire evolution for host repertoire size N = 7132

requires an S × S rate matrix defined for S = 37 − 27 = 2059, causing Q to be too large for133

efficient inference. In order to handle large host repertoires, we numerically integrate over possible134

histories using data augmentation and MCMC rather than analytically computing the135

probabilities using matrix exponentiation. This data augmentation approach has been used to136

model sequence evolution for protein-coding genes (Robinson 2003) and historical biogeography137

(Landis et al. 2013; Quintero and Landis 2019), suggesting the framework may be useful to model138

host-parasite interactions as well. In this study, we assume that both daughter lineages identically139

inherits their host repertoires from their immediate ancestor at the time of cladogenesis.140

We define a model where the gain of a host (both 0→1 and 1→2) depends on the141

phylogenetic distance between the available hosts and those currently used by a lineage. Figure 1142

schematically illustrates the evolutionary dynamics of the model using M = 4 parasite species and143

N = 5 host species, while assuming that host gain rates are independent (Fig. 1a,c) or dependent144

(Fig. 1b,d) of phylogenetic distances among hosts. To formalize these dynamics, let q
(a)
y,z be the145

rate of change from host repertoire y to repertoire z by changing the state of host a. Also, let λij146

be the rate at which an individual host changes from state i to state j, and η(y, a, β) be a147

phylogenetic-distance rate modifier. The phylogenetic-distance rate modifier function, η, rescales148
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the base rate of host gain to allow new hosts that are closely related to the parasite’s current149

hosts to be colonized at higher rates than distantly related hosts. We define the instantaneous150

rate of change as151

q
(a)
y,z =



λ10, if potential host loss (ya = 1 and za = 0)

λ01η1(y, a, β) if potential host gain (ya = 0 and za = 1)

λ21, if actual host loss (ya = 2 and za = 1)

λ12η2(y, a, β) if actual host gain (ya = 1 and za = 2)

0, if direct transition between states 0 and 2 (|ya − za| > 1)

0, if y and z differ at more than one host

0 if z does not contain at least one actual host

and the phylogenetic-distance rate modifier function as152

η(y, a, β) = e−βd/d, (1)

where β controls the effect of d, the average pairwise phylogenetic distance between the new host,153

a, and the hosts currently occupied in y; and d is the average phylogenetic distance between all154

pairs of hosts. Pairwise phylogenetic distance is defined as the sum of branch lengths separating155

two leaf nodes. The difference between η1 and η2 is that in the first, pairwise distances are156

calculated between the new host and all potential and actual hosts, while in the second only157

actual hosts are included. This allows for a model formulation where the effect of host distances158

on λ01 and on λ12 are independent, while still allowing a formulation where they are equal. If159

β = 0, the gain rate of host a is equal to the unmodified gain rate, λ01 or λ12. If β > 0, the gain160

rate of phylogenetically close hosts is higher than distant hosts.161

We fit this model using the Bayesian data augmentation strategy described in Landis162
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et al. (2013). The method estimates the joint posterior probability of model parameters,163

θ = (µ, λ, β), and data-augmented evolutionary histories, Xaug, conditional on the observed host164

repertoire data, Xobs, and the parasite phylogeny, Ψp, and the host phylogeny, Ψh, using MCMC.165

To sample values from the posterior, P (Xaug, θ | Xobs,Ψp,Ψh), new parameter values for µ, λ, and166

β are proposed using standard Metropolis-Hastings proposals for updating simple parameters167

(Hastings 1970). Analogously, our MCMC stochastically proposes and/or accepts new augmented168

host repertoire histories using the Metropolis-Hastings algorithm. Augmented histories are169

proposed using two types of MCMC moves: branch-specific moves and node-and-branch moves.170

Branch-specific moves propose a new augmented history by sampling a branch from the171

phylogeny uniformly at random, then proposing new histories for a subset of host-characters using172

the rejection sampling method of Nielsen (2002) under the assumption that all host characters173

evolved under mutual independence (β = 0); this assumption allows us to rapidly propose new174

augmented histories. Although augmented histories are proposed assuming host characters evolve175

independently, we compute the acceptance probability for the branch-specific move by considering176

the full-featured model probability that allows for non-independent rates of character change177

when calculating the Metropolis-Hastings ratio. Thus, the augmented histories are sampled in178

proportion to their posterior probabilities under the full model. Node-and-branch moves involves179

sampling new host repertoire states for a node sampled uniformly at random within the parasite180

tree, along with the three branches incident to the node. Together, the branch-specific moves, the181

node-and-branch moves, and the parameter moves allow MCMC to estimate the posterior182

probability of combinations of host repertoire histories and evolutionary parameters. Further183

details are provided in Landis et al. (2013).184

Model selection185

When β = 0, the phylogenetic-distance dependent model, MD becomes a mutual-independence186

model, M0 , where the interaction between the parasite and each host evolves independently.187

These models are therefore nested (M0 ⊆MD) and we can compute Bayes factors for model MD188
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Figure 1: Host repertoire evolution along a hypothetical tree and resulting host-parasite interac-
tions. Two examples of coevolutionary histories between four parasites and five hosts are shown to
illustrate how the model works. Host repertoires evolve by gains (0→1 and 1→2, blue arrows) and
losses (1→0 and 2→1, red arrows). Coevolutionary histories in a and b produce the interactions
in c and d respectively. In c and d, each column represents one host and each row represents
the host repertoire of one parasite. High phylogenetic conservatism is produced when the rate of
repertoire evolution, µ, is low and the effect of the phylogenetic distance between hosts, β, is high.
Conversely, low phylogenetic conservatism is produced when µ is high and β is low.
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over model M0 using the Savage-Dickey ratio (Verdinelli and Wasserman 1995; Suchard et al.189

2001), defined as190

BD,0 =
P (β = 0 |MD)

P (β = 0 | xobs,MD)
(2)

where PD(β = 0 |MD) is the prior probability and P (β = 0 | xobs,MD) is the posterior191

probability, both defined in terms of the phylogenetic-distance dependent model, MD, at the192

restriction point β = 0 where MD and M0 are equivalent. While we could directly compute the193

prior probability of β = 0, we approximated the posterior at β = 0 using a kernel density194

estimator with a gamma function, which only takes positive values, and a bandwidth of 0.02. To195

interpret if and how Bayes factors favored the phylogenetic-distance dependent model, MD, we196

followed the guidelines of Jeffreys (1961): model M0 is favored for Bayes factors with values less197

than 1, insubstantial support is awarded to model MD for values between 1 and 3, substantial198

support for values between 3 and 10, strong support for values between 10 and 30, very strong199

support for values between 30 and 100, and decisive support for values greater than 100.200

Data analysis201

Simulation study.— We simulated 50 datasets for each of nine combinations of values for the rate202

of host-repertoire evolution, µ (0.01, 0.04, and 0.1), and values of β (0, 1, and 4). These203

parameter combinations produce datasets with varying degrees of phylogenetic conservatism for204

both parasites and hosts (Fig. 2). Each dataset contained 34 insects and 25 hosts, and was205

produced by simulating host repertoire evolution in the parasite tree used in the empirical study206

(see below). Host gain and loss rates were chosen to resemble the rates inferred from the207

empirical analysis. This simulation was designed to assess our statistical power to detect the208

effect of phylogenetic distance among hosts upon host gain rates given the size of our empirical209

dataset and the type of variation we expected it to contain.210

We ran independent MCMC analyses for each set of 50 datasets, under the211

phylogenetic-distance dependent model. We then quantified how well the posterior probabilities212
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Figure 2: Simulated datasets for nine parameter combinations. Interactions between Nymphalini
butterflies and their host plants for one of 50 simulations with each parameter combination. In
each of the nine datasets, each column represents one host in the repertoire and each row shows
the host repertoire of one butterfly species. When phylogenetic conservatism in host-parasite in-
teractions is low for both hosts and parasites, the interactions are more randomly spread (matrix
at bottom-left corner). As phylogenetic conservatism among parasites increases, host repertoires
(rows) become more similar (upper matrices). When there is phylogenetic conservatism among
hosts, host repertoires include more closely-related hosts (neighbouring columns; matrices to the
right)
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of coevolutionary histories correspond to the true history known from each simulation.213

Specifically, we first computed the posterior probability of interaction between each host and each214

internal node in the butterfly tree, for states 1 and 2 separately. Then, we calculated the sum of215

squared differences between each posterior probability (0 ≤ P ≤ 1) and the corresponding truth216

for that simulation (1, if the host was on the given state in the simulated dataset; 0, if not). This217

error term increases as the inferred ancestral host repertoires become less accurate.218

Empirical study.— In order to validate our method, we compiled data from the literature for219

butterflies from the tribe Nymphalini (Nymphalidae) and their host plants (see Supplementary220

Information for reference list). We chose this butterfly clade because we expect that a large221

fraction of the real potential hosts are known, as there has been systematic experimental studies222

of larval feeding ability. The dataset included 34 butterflies species and plants from 16223

angiosperm families (Figs. S1 and S2). For each butterfly species, host plants commonly used in224

nature were coded as ‘actual hosts’ and plants never used were coded as ‘non-hosts’. Plants that225

are not commonly used in nature, but for which there is strong evidence (field observation or226

experiment) that the larvae can feed upon them, were coded as ‘potential hosts’.227

Because we lack the information on potential hosts for most host-parasite systems (i.e.228

hosts are usually only classified as hosts or non-hosts), we tested whether our model is able to229

recover the same parameter estimates and coevolutionary histories when all the potential hosts230

are coded as non-hosts. For that, we ran the same analysis as for the full dataset, but first231

removed all the 1s from the empirical dataset. Then we compared the posterior probabilities232

inferred from the two datasets. To assess the similarities between the coevolutionary histories233

inferred using the different datasets, we calculated summary statistics for the absolute difference234

in probability of each interaction between hosts and internal nodes in the butterfly tree.235

For both the simulation and empirical studies we used the phylogenetic relationships236

between butterfly species in the Nymphalini tribe as proposed by Chazot (unpublished, Fig. S3)237

and the phylogenetic relationships between angiosperm families proposed by Magallón et al.238

(2015). Although our framework allows the inclusion of a large number of hosts in the same239

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/675017doi: bioRxiv preprint first posted online Jun. 18, 2019; 

http://dx.doi.org/10.1101/675017
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis, computational time increases significantly with the size of the host repertoire. We240

therefore chose to include 25 hosts, which allows the inclusion of all host lineages used by any of241

the butterflies. To ensure the inclusion of all plant lineages that might have been used as hosts in242

the past, we pruned the angiosperm phylogenetic tree so that all 16 families in the dataset were243

included, and the remaining branches were collapsed to more ancestral nodes until only 25 tips244

were left. We then pruned all the branches leading up to the tips to the time of origin of the245

butterfly clade (approx. 22 Ma), and this pruned tree was then used to calculate phylogenetic246

distances between hosts. To simplify the analysis, we hold the phylogenetic distances between247

plant families constant, independent of geological time, even though the distances would be248

expected to increase as evolution proceeds towards the recent.249

We summarized inferred coevolutionary histories in two ways. First, we calculated the250

posterior probability for fundamental and realized host repertoires at internal nodes of the251

Nymphalini phylogeny based on the frequency with which states 1 and 2 were sampled for each252

host during MCMC. Second, in order to reduce the dimensionality of the host repertoire and253

facilitate visualization of ancestral state reconstructions, we assigned hosts to modules based on254

extant butterfly-plant interactions (Fig. S2). Modules are groups of plants and butterflies that255

interact more with each other than with other taxa, thus host plants are assigned to the same256

module when they are used by the same butterflies. To identify the modules, we used a simulated257

annealing algorithm that maximizes the index of modularity. Specifically, we used Newman and258

Girvans metric (Newman and Girvan 2004) modified for bipartite networks (Barber 2007) as259

implemented in the software MODULAR (Marquitti et al. 2014).260

Software configuration.— All analyses were performed in RevBayes (Höhna et al. 2016). For the261

simulated data, we ran two independent MCMC analyses for 105 cycles, sampling parameters and262

node histories every 50 cycles, and discarding the first 5× 104 as burnin. For the empirical data,263

we ran five independent MCMC analyses, each set to run for 106 cycles, sampling every 50 cycles,264

and discarding the first 105 as burnin. To verify that MCMC analyses converged to the same265

posterior distribution, we applied the Gelman diagnostic (Gelman and Rubin 1992) provided266
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through the R package coda (Plummer et al. 2006). For both simulated and empirical datasets,267

we used the following priors: β ∼ Exponential(1), µ ∼ Exponential(10), and268

λ ∼ Dirichlet(1, 1, 1, 1). Analysis scripts and data files are available at269

https://github.com/mpiresbr/host_repertoire. A RevBayes tutorial for the empirical270

analysis will be soon available at https://revbayes.github.io/tutorials#host_rep.271

Results272

Simulation study.—Posterior distributions of parameter values for the 9×100 MCMC analyses are273

shown in Figure 3. Overall, the model was able to accurately recover the true simulation274

parameters (true value within 95% highest posterior density, or HPD). However, accuracy275

decreased with increasing rate of host repertoire evolution, possibly due to character saturation.276

We performed model selection based on Bayes factors. Considering that the prior277

distribution is β ∼ Exponential(1), a high marginal posterior probability for β = 0 under MD is278

necessary to result in a Bayes factor < 1 and thus selection of M0. For simulations with β = 0,279

the correct model, M0, was selected in more than 60% of the simulations, and most of the280

remaining simulations gave insubstantial support to MD (Fig. 4). When β = 1, Bayes factors281

correctly selected MD in the majority of cases, but strong support for MD was only achieved in282

simulations with β = 4, particularly when the rate of evolution was highest (µ = 0.1).283

We then compared the true coevolutionary history of each simulation to the corresponding284

posterior distribution of the sampled coevolutionary histories (Fig. 5). The estimation error, that285

is, the sum of squared differences between estimated and true coevolutionary histories, was very286

low when the rate of host-repertoire evolution was lowest (µ = 0.01), but also when the287

phylogenetic-distance power was highest (β = 4). This means that accuracy in the estimation of288

coevolutionary history increases with phylogenetic conservatism on both the butterfly and the289

plant trees. Overall, error was higher on the estimation of actual hosts (state 2) than potential290

hosts (state 1).291
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Figure 3: Posterior densities of parameters in the simulation study. Panels a and b are faceted by
true parameter values of µ and β, respectively. Fifty datasets were simulated for each combination
of β ∈ {0, 1, 4} and µ ∈ {0.01, 0.04, 0.1}, while λ01 = 0.03, λ10 = 0.6, λ12 = 0.27, and λ21 = 0.1
were held constant. For each parameter combination, the posterior distributions of the two MCMC
samples of the 50 datasets were combined. Means are represented by black dots, black vertical lines
show the 95% HPD, and red horizontal lines mark the true parameter value used in the simulations.
Y-axis in panel a is in log10 scale for better visualization.
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Figure 5: Errors for inferred dispersal histories of simulation study. The sum of squared differences
between the posterior probability (0 ≤ P ≤ 1) and the true history (P = 0 or 1) for each host and
each internal node were computed per simulated dataset. Each violin plot shows the distribution
of these sums for each batch of 50 simulated datasets. Means are represented by black dots, black
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Empirical study.— The estimated mean rate of host repertoire evolution for Nymphalini was292

µ = 0.025, the mean phylogenetic-distance power was β = 0.51, and the mean gain/loss rates were293

λ01 = 0.012, λ10 = 0.6, λ12 = 0.27, and λ21 = 0.12 (Fig. 6, blue). Our method recovered similar294

parameter estimates for the empirical dataset when omitting the intermediate state at the tips –295

i.e. coding all potential hosts (state 1) as non-hosts (state 0): µ = 0.031, β = 0.39, λ01 = 0.001,296

λ10 = 0.71, λ12 = 0.28, and λ21 = 0.01 (Fig. 6, orange). The posterior distributions from analyses297

with and without the intermediate state at the tips diverged the most for the rate parameters298

associated with the transition to the intermediate state, λ01 and λ21. In both cases the transition299

rate was underestimated when 1s were removed from the dataset. Bayes factors selected the300

independence model, M0, for both the full dataset (BF = 0.43) and when 1s were removed from301

tip states (BF = 0.40).302
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Figure 6: Marginal posterior densities for parameters in the Nymphalini-Angiosperms study for
both the full dataset (3 states at tips) and the dataset omitting the intermediate state (2 states
at tips). Grey lines corresponds to the priors β ∼ Exponential(1), µ ∼ Exponential(10), and
λ ∼ Dirichlet(1, 1, 1, 1).

Finally, we reconstructed the fundamental and realized host repertoires at internal nodes303

of the Nymphalini phylogeny based on the sampled histories during MCMC. Coevolutionary304

histories inferred using the datasets with and without potential hosts were very similar, with305

mean difference in interaction probability of 0.003. Thus, we only show the ancestral states306
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inferred from the full, three-state dataset (Figs. 7 and S4). To facilitate visualization of the307

ancestral state reconstruction, we grouped the 16 parasitized host families into five modules, as308

identified by the simulated annealing algorithm (Fig. S2). Nine families (representing three309

modules) were inferred to be used by ancestral Nymphalini species with high probability.310
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Figure 7: Evolution of butterfly-plant interactions through time. Ancestral state estimates (left)
of host repertoire across the Nymphalini phylogeny are shown for interactions with more than 75%
posterior probability. The x-axis under shows time before present in millions of years. Extant
species interactions (right) between Nymphalini and their host plants are presented as a raster,
where each square represents one interaction between a butterfly species and a host family. Colors
represent different modules, i.e. groups of plants that are often hosts to the same butterflies at
present time. Square size was used to differentiate between actual and potential hosts. Arrows
indicate nodes shown in Fig. 8.

We found strong support for the association between the ancestor of all Nymphalini311

butterflies and Urticaceae hosts (and Cannabaceae to a lesser degree, Fig. S4). All other host312
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families have been colonized in the last 15 Myr, after the divergence of the two largest clades313

within Nymphalini, Vanessa and Nymphalis + Polygonia. Most species within Vanessa, both314

extant and ancestral, are specialists on Urticaceae. V. virginiensis and V. cardui are the only315

extant species that use more than two host families, and these hosts have likely been colonized by316

their most recent common ancestor (node 38 in Fig. 8). On the other hand, the variation in host317

use in the Nymphalis + Polygonia clade seems to be the result of host colonizations by multiple318

species along the diversification of the clade. For example, in Fig. 8 we can see the colonization of319

potential hosts by the ancestor of P. c-album and P. faunus (node 53) as well as strong320

specialization on a new host by Kaniska canace.321
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Figure 8: Host repertoires at selected nodes of the Nymphalini tree (arrows in Fig. 7). Numbers
indicate the node index (compatible with Fig. S3). For the only terminal taxa depicted, Kaniska
canace, the observed host repertoire is shown. For all other repertoires, the posterior probabilities
for states 1 and 2 are shown.

Discussion322

The method we develop here to infer the evolutionary history of host-parasite associations323

has many advantages over previous approaches. First, it is based on stochastic models and on324

established principles of statistical inference, which means that it provides a robust framework for325
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characterizing the evolutionary processes that shape host-parasite associations and for selecting326

among alternative coevolutionary models. Second, our model introduces the novel concept of a327

host repertoire, which we think is an important step forward. Besides accounting for the328

possibility of parasites having more than one host over time scales of macroevolutionary329

significance, we can now directly infer the influence of host relatedness and host traits on the330

process of gaining new hosts. Third, the stochastic model of host-parasite coevolution that we331

introduce here is, to our knowledge, the first that explicitly accounts for evolution of the332

fundamental host repertoire. By recognizing the fact that a parasite may have potential hosts in333

addition to its actual hosts, and that the set of potential hosts may persist over time, the dynamic334

of the model changes. What would otherwise have appeared as remarkable repeated patterns of335

colonization of the same host lineages can now be explained as the effect of frequent transitions336

between potential and actual hosts in an otherwise conserved host repertoire.337

Our model can readily be extended in many interesting ways. The version we present here338

accounts for the effect of host phylogeny by allowing the rate of host gain to depend on host339

relatedness. For simplicity, we assumed that the number of available hosts and host relatedness340

remain constant over geological time. This would be appropriate for a group of parasites that341

radiated after the relevant host lineages had been formed, which is arguably the case for the342

empirical example we chose. However, it should be relatively straightforward to extend our343

framework to account for more complex dependencies on host phylogeny. For instance, the host344

configurations could be modeled as changing over time, reflecting host cladogenesis.345

Another interesting direction for future research would be to modify the particular ways in346

which hosts and parasites coevolve. We note, for example, that Fig. 7 shows that host repertoires347

of Vanessa species overlap very little with the host repertoires of Nymphalis + Polygonia species,348

but it is not immediately clear what drives this pattern. One could design a model that allows the349

rates of host gain and loss to be influenced by evolving host traits — like secondary metabolites,350

growth form, or phenology, to mention a few examples relevant for insect-host plant associations351

— in addition to relatedness among hosts. Or, one might extend the model to allow closely352
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related parasite lineages to competitively exclude one another from host usage, similar to how353

competing lineages might exclude one another from geographical regions (Quintero and Landis354

2019). Finally, one might introduce a biogeographical component to the coevolutionary process,355

requiring parasites to be in sympatry with their actual hosts, while allowing parasites to be in356

sympatry or allopatry with their potential hosts. Statistically comparing such model variants will357

help illuminate drivers of host-parasite co-evolution.358

A potential concern with our approach is that already the basic version of the model is359

fairly parameter-rich. Given the type and amount of data that we can likely collect on360

host-parasite associations, is there enough statistical power to select among the models of interest?361

And is it possible to infer the model parameters of interest with a reasonable degree of accuracy?362

Overall, our results are encouraging in this respect. The simulations indicate that it is363

possible to infer the true parameter values of the basic model regardless of the level of364

phylogenetic conservatism in both parasites and hosts (Fig. 3). When the rates of colonization of365

new hosts are strongly dependent on the phylogenetic relatedness of hosts, then we are also able366

to distinguish between models with or without host relatedness effects using Bayes factors (Fig.367

4). However, our ability to select the correct model decreases when the effect of host phylogenetic368

relatedness is low (β ≤ 1), that is, when models become more similar. Further studies will have to369

show to what extent the sensitivity of the model test can be increased by selecting appropriate370

priors and improving the sampling of parameter space close to the boundary condition satisfying371

the restricted model. One option is to relax the assumption that β is non-negative, which would372

simplify the sampling of values close to β = 0. It will also be important to explore how dataset373

sizes and tree shapes, for both hosts and parasites, influence our ability to distinguish the models374

when the effect of host phylogeny is small.375

Importantly, the empirical analysis indicates that the method is able to model the376

evolution of fundamental and realized host repertoires even when the information about potential377

hosts is lacking. This significantly increases the applicability of our method, as information about378

fundamental host repertoires is missing for most host-parasite systems. Potential host data is379
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difficult to collect, as it requires experimental testing of a large number of potential host-parasite380

pairs. A possible improvement of our method, which we did not explore here, would be to model381

uncertainty in the observations of non-hosts when data on potential hosts are missing. That is, if382

we had no information about a host species being used by a particular parasite, we would383

translate that to a certain probability p of the species actually being a non-host, and a384

complementary probability 1− p of it being a potential host (Kuhner and McGill 2014). Modeling385

this observational uncertainty could help reduce the bias in parameter estimates that we observed386

when data on potential hosts were missing and all 0 states in the dataset were inappropriately387

treated as true non-hosts. This extension would also allow us to make predictions about host use388

abilities in extant parasites. These predictions could then inform experiments that aim to389

characterize fundamental host repertoires.390

We demonstrated the empirical application of our approach with a Bayesian inference of391

the coevolutionary history between 34 Nymphalini butterflies and 25 angiosperm families. We392

estimated the rate of host repertoire evolution along each branch of the butterfly tree as being393

between 0.33 and 0.93 events per million years. Bayes factors favored the independence model,394

where the probability of gaining a given hosts is not affected by the phylogenetic distance between395

hosts. As explained above, this does not necessarily mean that host relatedness plays no role, only396

that the effect is not large enough for us to detect it with the current approach and the given data.397

Estimates of gain and loss rates were not symmetric, and the rates also varied between398

states. According to our results, gain of the ability to use a host, λ01, is very rare (0.5% to 1.9%399

of overall rate), whereas loss is common (47% to 73% of overall rate). On the other hand,400

transition rates between states 1 and 2 were more symmetric and gain is more common than loss401

(λ12 between 15% and 39%; λ21 between 6% and 18% of overall rate). These rate estimates402

support the idea that the use of the same host lineage by multiple, phylogenetically widespread403

butterfly lineages is more likely explained by recolonization of hosts that have been used in the404

past (recurrence homoplasy), that is, by transitions between actual and potential hosts, rather405

than by completely independent colonizations of the same host (Janz et al. 2001). Note that406
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alternative scenarios that have been proposed in the literature to explain the evolution of407

Nymphalini host plant preferences, for instance by involving narrow ancestral host plant ranges408

and repeated independent colonization events, are also allowed by our model, but they are409

inferred to be much less likely than the conservative host repertoire scenario. Yet, because the410

potential host state is exited at the highest rate, the rate estimates also suggest that parasites do411

not retain their potential host relationships for prolonged periods of time. The moderate rates of412

transitions between potential and actual host states and the high departure rate from the413

potential host state together help explain why phylogenetic “pulses” of recurrent host acquisition414

manifest in some lineages but not others.415

For example, the use of Grossulariaceae by two non-sister clades within Polygonia is best416

explained by a scenario where Grossulariaceae was a potential host for the ancestral species (node417

60 in Fig. 8) and was subsequently gained as an actual host twice (at nodes 53 and 58, Fig. S4).418

The ability to use Salicaceae host plants seems to be even older. Salicaceae was likely a potential419

host for the ancestor of Nymphalis + Polygonia and later became an actual host in three different420

parts of the clade. If potential hosts were not explicitly modeled here, these transitions would421

look like three independent colonizations of a plant group that is very distant from the ancestral422

host (Salicaceae and Urticaceae diverged about 90 Ma). Instead, we could show that what might423

appear as big and sudden host shifts, are in fact the result of retention of ancestral host use424

abilities.425

Understanding how ecological interactions change is crucial if we want to predict both426

short and long-term consequences of global mixing of biota (Hoberg and Brooks 2015).427

Host-parasite interactions are of particular interest given the risk of emerging diseases, which can428

affect human populations directly and indirectly through their effects on crop species and wildlife429

(Brooks et al. 2014). Our method was designed to quantify changes in host-parasite associations430

by modeling the process of gaining and losing hosts, thus allowing us to make predictions based431

on host-parasite history. Hopefully, our approach will not only generate deeper insights into the432

evolutionary dynamics of host-parasite associations but also help humankind mitigate some of the433
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risks incurred by current environmental change.434
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