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Abstract.—Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models
to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within
a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas
that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of
biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on
a “data-augmentation” approach, in which we first populate the tree with a history of biogeographic events that is consistent
with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a
mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between
biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian
framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides
dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the
parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared.
Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data
augmentation; historical biogeography; Markov chain Monte Carlo.]

Historical biogeography—the study of the past
geographic distribution of species and the processes
that influence species distribution—remains a
difficult problem in evolutionary biology. Inference of
biogeographic history is made particularly challenging
because of the many factors that influence species range,
including various geological, climatic, ecological, and
chance events. Both the diversity of factors influencing
the geographic range of a species and the uncertainty
regarding their relative importance motivates pursuit
of biogeographic inference within a solid statistical
framework. A statistical approach requires that the
assumptions of an analysis be explicitly stated through
the construction of probabilistic models that include
parameters representing processes thought to impact
the geographic distribution of species. This approach
allows for the efficient estimation of model parameters
and, perhaps more importantly, the rigorous comparison
of alternative biogeographic models.

Over the past decade, several promising methods
have been proposed that cast biogeographic inference
in a statistical modeling framework. Lemmon and
Lemmon (2008) and Lemey et al. (2009; 2010) proposed
stochastic models that treat the distribution of species
as continuous variables. A few years earlier, Ree et al.
(2005) and Ree and Smith (2008) proposed stochastic
models that treat the distribution of species as a discrete
variable. For both approaches—those treating space
as a continuous or a discrete variable—parameters
are estimated using maximum likelihood or Bayesian
inference.

The discrete-space model of Ree et al. (2005) is
particularly intriguing because its basic statistical

flexibility has the potential to profoundly change
biogeographic inference, but is hampered by
computational limitations. They modeled the
colonization of and local extinction within a set of
discrete areas as a continuous-time Markov process
with a state space consisting of all possible geographic-
range configurations. The machinery for computing
the likelihoods of discrete geographic ranges on
phylogenetic trees is the same as that used to calculate
the likelihood of discrete characters (e.g., nucleotide
sequences) on a tree; matrix exponentiation is used
to calculate the probability of transitions among
states/ranges along branches and the Felsenstein
(1981) pruning algorithm (also see Gallager 1962) is
used to account for different ancestral configurations
at the interior nodes of the tree. Together, matrix
exponentiation and the Felsenstein pruning algorithm
allow the likelihood to account for all possible histories
of area colonization and local extinction that could have
given rise to the observed geographic distribution of
species.

The conventional algorithms for calculating the
likelihood, however, have practical limitations. Both
matrix exponentiation and the pruning algorithm
become computationally unmanageable when the
number of areas becomes too large. Practically speaking,
this means that inference under a discrete-space model,
such as that proposed by Ree et al. (2005), is limited
to about 10 areas. With 10 areas, there are a total of
210 −1=1023 possible states (geographic ranges) and
the rate matrix of the continuous-time Markov model
is 1023×1023 in dimension. A recent implementation
of the Ree et al. (2005) method allows up to 20 areas
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to be considered, but at the expense of making some
restrictive assumptions about the number of areas that
can be occupied concurrently per species (Webb and
Ree 2012). The usual method for working around the
limitations of the Ree et al. (2005) approach is to
group areas together in such a way that the biologist
considers no more than about 10 areas. This solution,
unfortunately, comes at a cost: hard earned species-
distribution data are lumped, limiting the spatial
resolution of the inferred biogeographic history; the
inference of parameters suffers because fewer data are
available for estimation; and the complexity of the
models that can be distinguished is limited by the small
number of areas that can be considered.

In this article, we describe a computational method—
referred to as “data augmentation”—that allows the
approach proposed by Ree et al. (2005) to be extended
to hundreds or thousands of areas. The approach is
inspired by the method described by Robinson et al.
(2003) for the analysis of amino acid sequence data under
complex models of non-independence, which relies on
Markov chain Monte Carlo (MCMC; Metropolis et al.
1953; Hastings 1970) to carry out the tasks normally
accomplished by means of matrix exponentiation and
the Felsenstein pruning algorithm. The biogeographic
model described by Ree et al. (2005) explicitly considers
various scenarios by which ancestral ranges may become
subdivided during speciation and inherited by daughter
species. In contrast, the two biogeographic models that
we describe here both assume that ancestral ranges are
inherited identically: the first is a simple (null) model
in which every area has an equal rate of colonization
or extinction and a second model in which rates of
colonization are distance dependent. We develop this
approach in a Bayesian statistical framework in which
model parameters are estimated using MCMC and
candidate biogeographic models are compared using
Bayes factors. We explore the statistical behavior of
this approach by means of simulation, and demonstrate
its empirical application with an analysis of Malesian
species within the flowering-plant clade, Rhododendron
section Vireya.

METHODS

Statistical Inference of Biogeographic History
We are interested in modeling the biogeographic

distribution of M extant taxa over a geographic space
that has been discretized into N areas, where each
taxon occurs in at least a single area. The evolutionary
relationships among the M taxa are described by a
rooted, time-calibrated phylogenetic tree that in this
article is considered to be known without error. We label
the tips of this tree to correspond to the observed species,
1,2,...,M; the interior nodes of the tree are labeled
in postorder sequence M+1,M+2,...,2M (Fig. 1). The
ancestor of node i is denoted �(i). The most recent
common ancestor of the M observed species (the “root”

node) is labeled 2M−1. We also consider both the branch
subtending the root node (the “stem” branch) and its
immediate ancestor (the “stem” node), which is labeled
2M. The times of the speciation events (nodes) on the
tree are designated t1,t2,...,t2M. Typically, the species
at the tips are contemporaneous and extant, such that
t1 = t2 =···= tM =0. The temporal duration of the branch
below node i, typically in terms of millions of years, can
be calculated as Ti = t�(i) −ti.

Our use of “geographic range” refers to the pattern
of presence and absence of a lineage within the set
of discrete geographic areas. For the models we will
explore, all geographic ranges in which at least one area
is occupied are admissible (i.e., the case in which all
areas are unoccupied is precluded). The occurrence of
the i-th species in the j-th area is denoted xi,j, where xi,j
is equal to 0 or 1. Although we model geographic ranges
as bit vectors, we represent them using bit strings (i.e., a
sequence of zeros and ones) to simplify our notation. For
example, the bit string 101 corresponds to a geographic
range for a species that is present in areas 1 and 3
and absent in area 2. The biogeographic state space, S,
includes the 2N −1 geographic ranges for a model with
N discrete areas. For example, all allowable geographic
ranges, S, for a model with N =3 areas are

S ={001,010,100,011,101,110,111},
and the number of distinct configurations for this
state space is n(S)=23 −1=7. We designate the
observed geographic range for the i-th species as
xi = (xi,1,xi,2,...,xi,N), where Xobs = (x1,x2,...,xM), and
designate ancestral geographic ranges at interior nodes
of the tree as xM+1, xM+2,...,x2M.

The “states” (geographic ranges) that we observe at
the tips of the tree were generated through a potentially
complicated history of colonization and local extinction.
Figure 1b–d depicts examples of biogeographic histories.
A “biogeographic history” is a specific sequence of
colonization and/or local extinction events that could
have given rise to the observed geographic ranges. An
event of range expansion or contraction is denoted xi,j,k ;
each event occurs on a specific branch (leading to node
i) and involves a single area (j) at a point in time (k,
indicating the relative time of the k-th event on branch
i, �(i)

k ∈�(i), which we describe in more detail below).
The history of range expansion or local extinction on
the branch with index i involving area j is denoted
xi,j = (xi,j,1,xi,j,2,...,xi,j,F), where events along branch
i are ordered such that xi,j,1 is the oldest and xi,j,F
is the most recent. The collection of histories over all
branches of the tree is denoted Xaug = (x1,x2,...,x2M−1),
representing the data augmented biogeographic history.
For example, there are 6, 6, and 12 biogeographic events
for the histories shown in Figure 1b, c, and d, respectively.

The probability of a particular biogeographic history
can be calculated in a straightforward manner by
assuming that the events of colonization and local
extinction occur according to a continuous-time Markov
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FIGURE 1. An example of a tree with M=4 species. A) Nodes on the
tree are labeled such that the tips of the tree have the labels 1,2,...,M
whereas the interior nodes of the tree are labeled M+1,M+2,...,2M.
Note that in this article we also consider the “stem” branch of the tree,
which connects the root node (node 7) and its immediate common
ancestor (node 8). B–D) Several possible biogeographic histories—
comprising 6, 6, and 12 events, respectively—that can explain the
observed species ranges.

chain (Ree et al. 2005). A continuous-time Markov
chain is fully described by a matrix containing the
instantaneous rates of change between all pairs of states
(geographic ranges, in this case). This instantaneous-
rate matrix, Q, has off-diagonal elements that are
all ≥0 and negative diagonal elements that are
specified such that each row of the matrix sums
to 0. The elements of Q are parameterized by
functions of θ, the parameter vector, according to some
dispersal model, M. The probability of a biogeographic
history is obtained using the information on the
position of colonization/extinction events on the tree
and information from the instantaneous-rate matrix.
Consider, for example, a case in which the process starts
with a geographic range of 001 at one end of a branch,
with a subsequent colonization of area one at time t1
(i.e., changes from 001→101), and then remains in the
geographic range 101 until the end of the branch at time
t2. The probability of this history is

−q001,001e−(−q001,001 t1)︸ ︷︷ ︸
Waiting time for colonization

× − q001,101

q001,001︸ ︷︷ ︸
Probability of colonization event

× e−(−q101,101 (t2−t1))︸ ︷︷ ︸
Probability of no further events

There are an infinite number of biogeographic
histories that can explain the observed geographic
ranges. When calculating the probability of the observed
geographic ranges at the tips of the phylogenetic tree,
it is unreasonable to condition on a specific history
of biogeographic change. After all, the past history
of biogeographic change is not observable. Instead,
the usual approach is to marginalize over all possible
histories of biogeographic change that could give rise
to the observed geographic ranges. The standard way
to do this is to assume that events of colonization
or local extinction occur according to a continuous-
time Markov chain (Ree et al. 2005). Marginalizing
over histories of biogeographic change is accomplished
using two procedures. First, exponentiation of the
instantaneous-rate matrix, Q, gives the probability
density of all possible biogeographic changes along a
branch

p(y→z;t,Q)=
[
e−Qt

]
yz
,

where y is the ancestral geographic range, z is the
current geographic range, and t is the duration of the
branch on the tree. The geographic-range transition
probabilities obtained in this way marginalize over all
possible biogeographic histories along a single branch,
but do not account for the possible combinations of
geographic ranges that can occur at internal nodes of
the phylogeny. The Felsenstein (1981) pruning algorithm
is typically used to marginalize over the different
combinations of “states” (ancestral geographic ranges)
at the interior nodes of the tree. Taken together, matrix
exponentiation and the pruning algorithm comprise the
conventional approach for calculating the probability
of observing the geographic ranges at the tips of the
tree while accounting for all of the possible ways
those observations could have been generated under the
model.

The dimensions of the instantaneous-rate matrix, Q,
however, are n(S)×n(S), where n(S)=2N −1, so the size
of Q grows exponentially with respect to the number
of geographic areas, N. Furthermore, computing the
matrix exponential is of complexity O(n(S)3) (Golub and
Loan 1983). Thus, for values of N ≥20, the number of
computations required to exponentiate the rate matrix is
quite large and computing the transition probabilities
in this manner is intractable (Ree and Sanmartín
2009).

Statistical phylogenetic models encounter an
analogous problem when modeling nucleotide
evolution. As Felsenstein (1981) suggests, one
might assume that each nucleotide site evolves
under mutual independence to keep the state space
small and amenable to matrix exponentiation. For
biogeographic inference, however, the assumption
of mutual independence would imply (implausibly)
that the correlative effects between areas—such as
geographic distance—are irrelevant to dispersal
processes, which renders this assumption suitable only
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as a null model for testing the fitness of more plausible
(e.g., distance-dependent dispersal) biogeographic
models.

Our primary motivation here is to remove the
computational constraint that precludes the elaboration
of more complex (and realistic) biogeographic models.
As a result of this focus, we leave the rigorous
comparison of inference across alternative models and
methods as an open topic for future study.

A Distance-Dependent Biogeographic Model
The instantaneous-rate matrix, Q, describes how the

geographic range of a species can evolve through
time. As with the formulation of Ree et al. (2005),
we assume that in an instant of time only a single
area can be gained or lost. In other words, each row
of Q contains up to N positive, non-zero entries,
which correspond to the rates at which any one of
the N areas switches between absent and present (i.e.,
the N 0→1 and 1→0 positive entries of the row).
Additionally, each row contains a single element on
the diagonal of the matrix, defined as qi,i =−∑i �=j qi,j,
which ensures that each row of Q sums to 0. The
remaining entries in Q have a value of 0, as they entail an
instantaneous change in geographic range involving two
or more areas. This process corresponds to a dispersal–
extinction (DE) model, which is somewhat simplified
relative to the dispersal–extinction–cladogenesis (DEC)
model (Ree et al. 2005), in that ancestral ranges are
inherited identically. However, the current framework
greatly expands the scope for the elaboration and
inclusion of more diverse and realistic speciation
scenarios.

We define a distance-dependent dispersal model,MD,
where the rate of gaining a particular area (0→1)
depends on the relative proximity of available areas to
those currently occupied by a lineage. That is, the rate
of colonizing a nearby area just outside the perimeter
of the current geographic range should be greater than
the rate of colonizing a relatively remote geographic
area. The precise nature of the relationship between
geographic distance and dispersal probability might be
specified in numerous ways (see, e.g., Wallace 1887;
MacArthur and Wilson 1967; Hanski 1998). Our distance-
dependent model specifies a simple relationship in
which the probability of dispersal between two areas
is inversely related to the geographic distance between
them.

Let q(a)
y,z be the rate of change from the geographic

range y to the geographic range z, where y and z differ
only at the single area index a. Note that the rate function
accepts any pair of bit vectors as arguments, allowing
us to later assign configurations from xi,•,k to y and z,
xi,•,k being the geographic range of species i at time �(i)

k .
Also, let �0 ∈θ and �1 ∈θ be the respective rates at which
an individual area is lost or gained within a geographic
range, and �(y,z,a,�) be a dispersal-rate modifier that
accounts for correlative distance effects. We define the

instantaneous dispersal rate as

q(a)
y,z =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�0 if za =0
�1�(y,z,a,�) if za =1
0 if y and z differ at more

than one area
0 if y=00...0

(1)

and the distance-dependent dispersal-rate modifier as

�(y,z,a,�)=
⎛
⎝ N∑

n=1

1{yn=1}d(Gn,Ga)−�
⎞
⎠

×
⎛
⎝ ∑N

m=11{zm=0}∑N
m=11{zm=0}

(∑N
n=11{yn=1}d(Gn,Gm)−�

)
⎞
⎠ (2)

where we define 1{x=y} as the indicator function that
equals 1 when both arguments are equal and 0 otherwise,
and d(·) as the Great Circle distance between two
geographical coordinates on the surface of a sphere,
known by

d(Gn,Gm)=2rsin−1

(√
sin2

(
Gm,�−Gn,�

2

)
+cos(Gn,�)

×
√

cos(Gm,�)sin2
(

Gm,�−Gn,�

2

))
,

where r is the radius of the sphere, and Gn is a vector
with elements Gn,� and Gn,� that correspond to the
latitude and longitude of the the centroid of discrete area
n. Here, we take a sphere with r≈6.37×106 meters to
approximate the size and shape of Earth.

Figure 2 will help develop intuition for how we
model distance-dependent dispersal. In effect, the first
term of �(·) computes the sum of inverse pairwise
�-exponentiated geographic distances between the
dispersal target, a, and all currently occupied areas
of the geographic range. The second term normalizes
the dispersal rate by the mean of all inverse pairwise
geographic distances between all occupied–unoccupied
area-pairs. This normalization ensures that the sum of
dispersal rates with or without the distance-dependence
modifier are equal, which helps identify and interpret
parameters �1 and �. If �(·)=1 or �=0, then the rate of
dispersal to area a equals the unmodified dispersal rate,
�1. If �>0, then the rate of dispersal to nearby areas
is higher than that to more distant areas. Conversely,
when �<0, the rate of dispersal to more distant areas
is higher than that to nearby areas. Finally, model MD is
equivalent to M0 when �=0.

Note that the rate of gain depends on the distance-
dependent correlation function �(·), but the rate of loss
does not, so the distance-dependent dispersal model is
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FIGURE 2. Cartoon of the computation of the distance-dependent
dispersal-rate modifier, �(·). Here, we are interested in computing the
rate of y=1100 transitioning to z=1101. The first term computes the
sum of inverse distances raised to the power � between the area of
interest (i.e., 4) and all currently occupied areas (i.e., areas 1 and 2).
The second term then normalizes this quantity by dividing by the
sum of inverse distances raised to the power � between all occupied–
unoccupied area-pairs (i.e., the denominator), then multiplying by
number of currently unoccupied areas (i.e., 2, the numerator).

not time reversible when � �=0. This fact has implications
for evaluating the stationary frequency of geographic
ranges at the root of the tree under this biogeographic
model, which we detail below.

Sampling Biogeographic Histories
Our goal is to conduct inference under a dispersal

model that captures the correlative effects of geographic
distance between areas when N is large. For the
computational reasons cited above, we cannot use matrix
exponentiation to compute the likelihood under such
a biogeographic model. Instead, we adapt a Bayesian
data-augmentation approach that was introduced by
Robinson et al. (2003) to model site-dependent protein
evolution. Rather than analytically integrating over
all possible biogeographic histories using matrix
exponentiation, we numerically integrate over possible
histories using data augmentation and MCMC.

We use the stochastic character-mapping algorithm
described by Nielsen (2002) to sample biogeographic
histories under the mutual-independence model, M0.
This works by first sampling a set of geographic
ranges for all internal nodes of the phylogeny and
then sampling intermediate ranges over each of
the branches connecting pairs of ancestor–descendant
nodes. Upon completion, each branch is associated
with a biogeographic history: the events comprising
this history on each branch are ordered chronologically

from past to present. Examples of such biogeographic
histories are depicted in Figure 1b–d. We describe the
process of sampling biogeographic histories in more
detail below.

We first sample a set of geographic ranges for all
M internal nodes from the joint posterior probability
distribution of geographic-range configurations at the
nodes. For tip nodes, we simply assign the observed
species ranges. Next, we visit each individual branch in
a pre-order traversal (moving from the root to the tips)
of the tree. For each branch, we simulate a sequence
of intermediate geographic ranges from the ancestral
to the descendant node using rejection sampling;
that is, the biogeographic history simulated along a
branch must be consistent with the geographic ranges
sampled/specified for the ancestor and descendant
nodes of that branch. To do so, we first identify the
initial geographic range at the ancestral node, the final
geographic range at the descendant node, and the
duration of the branch separating these two nodes.
We then sample a history of dispersal events for
each area under the mutual-independence model, M0,
under a simple instantaneous-rate matrix for a single
area

Q∗ =
(−�∗

0 �∗
0

�∗
1 −�∗

1

)
,

where �∗
0 and �∗

1 are the per-area rate of loss/local
extinction (1→0) and gain/colonization (0→1),
respectively. To iteratively sample the biogeographic
history for each area, j∈{1,...,N}, we initialize �0 = t�(i)
and k =1. Each iteration moves the process further
along the branch by sampling a new event time �
from Q∗, updating �0 =�0 −�, incrementing k, and
inserting �0 into �(i) in sorted order as we go. Each
event results in the state for area j changing to its
complement (i.e., 0→1, or 1→0), which we record
in the branch history, xi,j,k . We continue to sample
dispersal events until the time of the next event is
younger than the age of the end of branch, �0< ti,
whereupon we record the final event time as �(i)

F = ti.
Since time is exponentially distributed, the probability
that any two areas undergo dispersal events at precisely
the same instant occurs with probability 0, which is
consistent with the one-change-at-a-time assumption of
the model.

When the biogeographic history for area j is sampled,
we check to make sure it matches the geographic
ranges sampled at the nodes. Inconsistent histories are
rejected and resampled for each area. Additionally, we
reject and resample events that induce the forbidden
extinction configuration. For models in which the per-
site (per-area) state space is large, rejection sampling
path histories can be computationally inefficient (c.f.,
Minin and Suchard 2007). This is not a concern in the
present case, however, as the per-area state space is
binary (i.e., 1 or 0 for presence/absence of a species in
an area), so we opt for the simpler algorithm.
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We iterate this process of simulating branch-specific
biogeographic histories for the remaining branches,
which we visit in a pre-order sequence. This results
in �(i) for each branch, an ordered vector of event
times across all N areas, enabling us to compute
the model likelihood given a sampled biogeographic
history.

Computing the Likelihood of Biogeographic Histories
Since we can compute the rate at which any area is

gained or lost given the current geographic range, we
can compute the likelihood of a sampled biogeographic
history by adopting a “mechanistic” interpretation of
the instantaneous-rate matrix, Q. In general, waiting
times between events in a continuous-time Markov
process are exponentially distributed: when the process
is in state i, the next event will occur with an
exponentially distributed waiting time, where the rate of
the exponential is equal to the overall rate of leaving state
i: qi,i =−∑j �=i qi,j. Moreover, the nature of the change
at the next event is also specified by the instantaneous-
rate matrix: the relative probability that the next event
entails a change from state i to state j is p(i→ j)=−qi,j/qi,i.
Accordingly, the probability that the next event entails
a change from state i to state j at time t is simply
equal to the probability of any event occurring at time
t times the relative probability that the event is a change
from i to j.

In the present case, we let xi,•,k = (xi,1,k,xi,2,k,...,xi,N,k)

be the state (sampled range) for lineage i at time �(i)
k .

Then, the probability that the next event is a the state
change y→z at time t is the product of probability of
the next sampled event occurring first among all possible
events and the probability of any event occurring at time
t, given as

p
(
y→z;t,θ,M)=− qy,z

qy,y

(−qy,y
)
e−(−qy,y)t

=qy,zeqy,yt, (3)

and the probability that no event occurs in time t is
given as

p
(
y→y;t,θ,M)=eqy,yt. (4)

Note that the distance-dependent dispersal model
defined in (1) depends on the superscript, (a), which
indicates the single area that differs between ranges y
and z. Here, we suppress the superscript in the interest
of simplifying the notation. Changes between ranges
that differ by more than one area have a transition
rate of 0 (they are prohibited under the one-change-
at-a-time model), so this summation requires only N
computations.

The likelihood of the biogeographic history over all
branches of the phylogeny is then simply calculated as

FIGURE 3. Cartoon of the likelihood terms. The biogeographic history
for lineage i includes the lineage start at time �(i)

1 , an extinction event

at area 2 at time �(i)
2 , a dispersal event into area 3 at time �(i)

3 , and the

lineage end at time �(i)
F , with all events laying within the time interval

(3.2,9.3). The probability of a sampled geographic range at the start of
the branch is conditioned on the previous (ancestral) geographic range
and the time separating the geographic ranges, 	�(i)

k =�(i)
k−1 −�(i)

k . The
likelihood is the product of the probabilities corresponding to each
interval accounting for an area loss at time �(i)

2 , an area gain at time �(i)
3 ,

and no further changes occurring before the lineage terminates.

the product of all stepwise likelihoods (Fig. 3),

L(Xobs,Xaug;θ,M)=⎛
⎜⎜⎜⎝
∏

i

⎛
⎜⎜⎜⎝

Fi−1∏
k=2

p
(

xi,•,k−1 →xi,•,k;	�(i)
k ,θ,M

)
︸ ︷︷ ︸

stepwise changes

⎞
⎟⎟⎟⎠

× p
(

xi,•,Fi →xi,•,Fi ;	�(i)
Fi
,θ,M

)
︸ ︷︷ ︸

no change

,

⎞
⎟⎟⎟⎠ (5)

where Fi =n
(
�(i)
)

is the number of events on branch

i, 	�(i)
k =

(
�

(i)
k−1 −�(i)

k

)
is the temporal interval between

events, and Xobs are the ranges observed at the tips.

Markov Chain Monte Carlo
We can compute the posterior probability of a single

sampled biogeographic history as

p(θ,Xaug |Xobs,MD)∝L(Xobs,Xaug;θ,MD)p(θ).

We approximate the joint posterior probability density
of the biogeographic model parameters numerically
using an MCMC algorithm. The general idea is
to construct a Markov chain with a state space
comprising the possible values for the model parameters
and a stationary probability distribution that is the
target distribution of interest (i.e., the joint posterior
probability distribution of the model parameters). Draws
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from the Markov chain at stationarity are valid, albeit
dependent, samples from the posterior probability
distribution of the biogeographic parameters (Tierney
1994). Accordingly, parameter estimates are based on the
frequency of samples drawn from the stationary Markov
chain.

By repeatedly sampling dispersal histories via MCMC,
we numerically integrate over Xaug,

p(θ |Xobs,MD)∝
∫

Xaug

p(θ,Xaug |Xobs,MD).

To generate samples from this posterior, we rely on the
Metropolis–Hastings algorithm (Metropolis et al. 1953;
Hastings 1970). Below, we describe our MCMC proposals
for an audience whom we assume has some familiarity
with MCMC.

Proposing parameters.—Our method has two pairs of
parameters for each area governing the rate at which it
is added to or removed from the current biogeographic
range: �0 and �1, which are used when computing the
likelihood under the distance-dependent model; and �∗

0
and�∗

1, which are used to sample biogeographic histories
under the simpler mutual-independence model. All four
rates must take on values >0 and are distributed by
half-Cauchy(0, 1) priors. We propose changes to the
dispersal-rate parameters by first randomly selecting
one of the four rates (uniformly with P=0.25), then
propose a new value for the selected rate parameter,
x′ =xe
(u−0.5), where x is the current dispersal rate, x′
is the proposed dispersal rate, 
 is a tuning parameter,
and u∼Uniform(0,1). The probability of accepting a
proposed change to the dispersal-rate parameters, �0
and �1, under the distance-dependent model, MD, is
calculated using the Metropolis–Hastings ratio

R=min

{
1,

L(Xobs,Xaug;θ′,MD)
L(Xobs,Xaug;θ,MD)

× p(θ′)
p(θ)

× �
′
�

}
,

where first term is the ratio of the likelihoods of the
proposed and current states, the second term is the ratio
of the prior probabilities of the proposed and current
states, and the final term is the simplified Hastings ratio
that describes the ratio of the proposal probabilities for
the proposed and current states.

To improve acceptance rates for proposed dispersal
histories under the mutual-independence model, M0,
we infer (�∗

0,�
∗
1)∈θ∗ by conditioning the likelihood on

M0 instead of MD, yielding the Metropolis–Hastings
ratio

R=min

{
1,

L(Xobs,Xaug;θ∗′,M0)
L(Xobs,Xaug;θ∗,M0)

× p(θ∗′)
p(θ∗)

× �
∗′
�∗

}
.

We specify a Cauchy(0, 1) prior for the distance-power
parameter, �, and propose new values �′ =N (�,
),
where
 is a tuning parameter. The Metropolis–Hastings

ratio to update � is

R=min

{
1,

L(Xobs,Xaug;θ′,MD)
L(Xobs,Xaug;θ,MD)

× p(θ′)
p(θ)

×1

}
,

where the Hastings ratio simplifies to 1 owing to the
symmetry of the normal distribution. We used the
Cauchy and half-Cauchy distributions as priors because
they are weakly informative and fat-tailed, causing
our inference to prefer parameter values near 0 while
permitting parameters to take on large values should the
data prove informative.

Proposing biogeographic histories.—To update
biogeographic histories, we sample an internal node
uniformly at random and a set of areas, S, uniformly at
random. We then propose a new biogeographic history
by resampling the biogeographic histories for areas
S for incident branches using the stochastic-mapping
approach described earlier.

The Metropolis–Hastings ratio for this proposal is

R=min

{
1,

L(Xobs,X′
aug;θ,MD)

L(Xobs,Xaug;θ,MD)
× p(θ)

p(θ)

×L(Xobs,Xaug;θ∗,M0)
L(Xobs,X′

aug;θ∗,M0)

}
,

where the first term is the likelihood ratio under the full
model, MD, and the second term is the proposal-density
ratio that accounts for the probability of sampling the
proposed biogeographic histories under the sampling
model, M0, using the sampling parameters, θ∗. The
parameters are not updated as part of this proposal, thus
the ratio of prior probabilities may be safely omitted as
it always equals 1.

Typically, the prior probability of each state
(geographic range) at the root is equal to the
corresponding stationary frequencies of the model.
As mentioned above, our distance-dependent dispersal
model is not time reversible, so we cannot approximate
the stationary distribution by conventional means (c.f.,
Robinson et al. 2003). Instead, we leverage the fact that
the stationary frequencies of states (geographic ranges)
of a model can be approximated by simulating the
continuous-time Markov process over a sufficiently long
branch. Accordingly, we append a long stem branch
to the root node, sample an ancestral “‘consensus”
configuration as the ancestral state at the stem node,
then simulate a biogeographic history along the stem
branch that is consistent with the states at the beginning
(stem node) and end (root node) of the stem branch.
Thus, we simulate into the stationary distribution
of geographic ranges under the distance-dependent
dispersal model along the stem branch, and then sample
from the approximated stationary distribution at the
root node using the same proposal machinery as is used
for any internal node.
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Model Selection
The mutual-independence model,M0, is equivalent to

the distance-dependent dispersal model, MD, when �=
0. Since M0 ⊆MD, we compute Bayes factors for these
nested models using the Savage–Dickey ratio (Dickey
1971; Verdinelli and Wasserman 1995), defined as

BD,0 = P0(�=0|MD)
P(�=0|�0,�1,xobs,MD)

,

where P0(�=0|MD) is the prior probability and P(�=
0|�0,�1,xobs,MD) is the posterior probability under the
more general distance-dependent dispersal model, MD,
at the restriction point �=0, where MD is equivalent
to the simpler mutual-independence model, M0. If the
posterior probability under MD at �=0 is significantly
greater than the corresponding prior probability, then
the Bayes factor supports MD (i.e., MD provides a better
fit to the data). Since there is no analytical expression for
the posterior probability, P(�=0|�0,�1,xobs,MD), we
approximate its distribution using the non-parametric
Gaussian kernel density estimation method provided by
default in R (R Core Team 2012).

Data Analysis
Simulation study.—We simulated 50 dispersal data sets
for each of eight values of �: 0, 0.25, 0.5, 1, 2, 3, 4, and 6.
These data were simulated upon a geography with 20×
30=600 uniformly spaced discrete areas positioned over
the Bay Area, California. Phylogenies were simulated
under a pure birth process with rate 1, then scaled
to have a height comparable to our empirical study
phylogeny. Dispersal and extinction rates were also
chosen to resemble the rates inferred from the empirical
analysis, but scaled to account for the increased number
of areas. We then ran independent MCMC analyses for
each data set under the distance-dependent model. To
identify the values of � that are indistinguishable from
the mutual-independence model, we computed Bayes
factors using the Savage–Dickey ratio for all posteriors
inferred under the distance-dependent model.

We then quantified how well the posterior
probabilities of dispersal histories correspond to the true
biogeographic history known from the simulation. To
do so, we compute the posterior probability of each area
being occupied by each internal node for each analysis,
then compute the sum of squared difference between
each probability (0≤P≤1) and the corresponding true
history (P=0 or 1) recorded from the simulation. As
this error term increases, the inferred ancestral ranges
at nodes may be interpreted as less accurate.

Empirical study.—We applied our method to 65 species
of the plant clade Rhododendron section Vireya, which are
distributed throughout the Malesian Archipelago. We
used the species distributions and 20 discrete areas of
endemism reported by Brown et al. (2006), and the time-
calibrated phylogeny reported by Webb and Ree (2012).

To compute distances between areas, we used a single
representative coordinate per area (depicted in Fig. 8a).
To simplify the analysis, we hold the geography to be
constant throughout time.

Software configuration.—Each MCMC analysis of the
simulated data ran for 106 cycles, sampling parameters
and node biogeographic histories every 103 cycles. For
the empirical data, we ran five independent MCMC
analyses, each set to run for 109 cycles, sampling every
104 cycles. To verify MCMC analyses converged to the
same posterior distribution, we applied the Gelman
diagnostic (Gelman and Rubin 1992) provided through
the coda package (Plummer et al. 2006). Results from
a single MCMC analysis are presented. The methods
described here have been implemented in BayArea, for
which C++ source code is available for download at
http://code.google.com/p/bayarea (last accessed June
28, 2013).

RESULTS

Simulation.—For 50 phylogenies of 20 tips and a fixed
geography of 600 areas (see Methods section), we
simulated 50 presence–absence data matrices for eight
values of �: 0, 0.25, 0.5, 1, 2, 3, 4, and 6. Distributions of the
mean posterior parameter values for the 8×50 MCMC
analyses are shown in Figure 4. For �≤3, the model
was able to retrieve the true simulation parameters
accurately, but this accuracy degraded for �≥4 (see
Discussion section).

Figure 5 shows that Bayes factors consistently selected
the correct model when data were simulated for�≥1 and
for �=0. For data simulated when 0<�<1, we observed
the greatest variance in the Bayes factor credible
intervals. Data simulated under conditions in which
distance had a weak effect on dispersal, i.e.,�≤0.25, were
typically (and appropriately) indistinguishable from the
mutual-independence model.

We then compared the true biogeographic history
of each simulation to the corresponding posterior
distribution of the sampled biogeographic histories.
The sum of squared differences between posterior
(estimated) and true (simulated) dispersal histories
varied little for values of �≤3, with slight elevation in
error for �≥4 (Fig. 6). The elevated error for large values
of the distance-power parameter, �, may be caused by
the underestimated parameter values, or it may be an
artifact of our error metric; it carries an independence
assumption, so it over-penalizes distance-dependent
dispersal histories that contain an excess of “near misses”
relative to “wild misses”.

Vireya.—Bayes factors strongly favor the
distance-dependent dispersal model over the mutual-
independence model to explain the biogeographic
history of 65 rhododendron species in the section Vireya
over 20 biogeographical areas throughout Malesia. The
estimated maximum a posteriori (MAP) value of the

 by guest on June 5, 2016
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


[15:19 30/9/2013 Sysbio-syt040.tex] Page: 797 789–804

2013 LANDIS ET AL.—BAYESIAN BIOGEOGRAPHY FOR MANY AREAS 797

FIGURE 4. Distributions of means of posteriors of simulation study. Fifty data sets were simulated for each value of �∈{0,0.25,0.5,1,2,3,4,6}
while �0 =0.05 and �1 =0.005 were held constant. For each set of 50 data sets, the mean of the posterior of each parameter was computed under
the distance-dependent dispersal model. Distribution means are given by a bold line, while the 25th and 75th percentiles are given by the lower
and upper edges of each box, called Q1 and Q3, respectively. The upper and lower whiskers indicate Q1 − IQR and Q3 + IQR, where IQR = 1.5
× (Q3 − Q1), and circles indicate outliers. The true parameter values are given by (A,B) the horizontal dashed line, and (C) the squares.

rate of area loss was �0 =0.13, the rate of area gain
was �1 =0.013, and the distance power was �=2.65
(Fig. 7). Gelman–Rubin convergence values for �0,�1,
and � between all pairs of MCMC analyses were <1.1,
which is consistent with all independent MCMC runs
converging to the same posterior.

Figure 8 shows a summary of the inferred
biogeographic history (Supplementary Fig. 1
shows the full history and observed ranges). The
per-area posterior probabilities of the ancestral
ranges strongly favor migration eastward into the
Malesian Archipelago originating from Southeast
Asia. The inferred biogeographic scenario—multiple
independent dispersal events from the Sunda Shelf
across Wallace’s Line into Wallacea—is favored over
that of a single dispersal event followed by pervasive
extinction events (Fig. 8b). Lydekker’s Line appears
to be less permeable, with only a single lineage

dispersing eastward from Wallacea across it onto
the Sahul Shelf (Fig. 8c). An interactive animation
of the ancestral range reconstruction is hosted at
http://mlandis.github.com/phylowood/?url=examples/
vireya.nhx (last accessed June 28, 2013).

Readers might naturally wonder how inferences
under the current method compare to those based
on alternative statistical biogeographic methods, such
as the DEC model of (Ree et al. 2005). Despite
their superficial similarities—both are likelihood-based
methods that rely on continuous-time Markov models
to describe the evolution of species geographic range—
the methods differ to an extent that makes it difficult
to draw any meaningful comparisons. Specifically,
the two methods invoke models that differ in many
respects (see Discussion section), and are implemented
in different statistical frameworks (maximum likelihood
vs. Bayesian inference).
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FIGURE 5. Distributions of Bayes factors for the simulation study. Fifty data sets were simulated for each value of �∈{0,0.25,0.5,1,2,3,4,6}
while �0 =0.05 and �1 =0.005 were held constant. Columns display the frequencies of strengths of support in favor of the distance-despendent
dispersal model, where strengths of support correspond to the intervals suggested by Jeffreys (1961): Favors M0 on (−∞,1); Insubstantial on
[1,3); Substantial on [3,10); Strong on [10,30); Very strong on [30,100); Decisive on [100,∞). Each column corresponds to the strengths of support
per 50 �-valued simulations. Bayes factors generally select the correct underlying model except for �=0.25.

FIGURE 6. Errors for inferred dispersal histories of simulation study. The sum of squared differences between the posterior probability (i.e.,
0<P<1) and the true history (i.e., P=0 or P=1) for each area and each internal node were computed per simulated data set. The box plots show
the distribution of these sums for each batch of 50 simulated data sets per value of �∈{0,0.25,0.5,1,2,3,4,6}. Distribution means are given by
a bold line, while the 25th and 75th percentiles are given by the lower and upper edges of each box, called Q1 and Q3, respectively. The upper
and lower whiskers indicate Q1 − IQR and Q3 + IQR, where IQR = 1.5 × (Q3 − Q1), and circles indicate outliers.
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FIGURE 7. Marginal posterior densities for dispersal parameters from the Malesian Rhododendron data set. MAP values (dashed gray line) for
the distance-dependent dispersal model parameters are A) �0 =0.13, B) �1 =0.013; and C) �=2.65. The dotted black line corresponds to the prior,
�∼Cauchy(0,1). Note that the posterior probability of �=0 is ∼0, resulting in “Decisive” support (c.f., Jeffreys 1961) for the distance-dependent
dispersal model over the mutual-independence model.

FIGURE 8. Biogeographic history of Malesian Rhododendron. A) The region was parsed into 20 discrete geographic areas following Brown et al.
(2006), which straddle two important biotic boundaries—Wallace’s and Lydekker’s Lines. Each circle corresponds to a discrete area. Distances
between these areas are based on a single coordinate for each area, indicated by an “x”. Posterior probability of being present in an area is
proportional to the opacity of the circle. Occupied areas with posterior probabilities<0.12 are masked to ease interpretation. Circles are shaded
according to their position relative to Wallace’s Line (B) or Lydekker’s Line (C). Branches are shaded by a gradient representing the sum of
posterior probabilities of being present per area for descendant–ancestor pairs. We infer a continental Asian origin for Malesian rhododendrons
with multiple dispersal events across Wallace’s Line (B) and a single dispersal event across Lydekker’s Line (C).

DISCUSSION

Historical biogeography has begun the transition
to explicitly model-based statistical inference (Ree
and Sanmartín 2009; Ronquist and Sanmartín 2011).
These methods describe the biogeographic process by
means of continuous-time Markov chain that models

the colonization of—and extinction within—a set of
discrete geographic areas, and calculate the likelihood
of the observed species geographic ranges at the tips
of the tree using matrix exponentiation (to integrate
over possible biogeographic histories along branches)
and Felsenstein’s pruning algorithm (to integrate over
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FIGURE 8. Continued

possible ancestral ranges at the interior nodes of the tree).
Although this is a vigorous area of research, reliance
on matrix exponentiation ultimately entails serious
computational constraints that limit both our ability
to develop more elaborate and realistic biogeographic

models and to apply these methods to more complex
and typical empirical problems.

We offer a Bayesian solution to this constraint that
relies on data augmentation and MCMC to numerically
integrate over biogeographic histories to estimate the
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C)

FIGURE 8. Continued

joint posterior probability of the parameters given the
data. The primary implication of this approach is a
substantial increase in the number of discrete areas
that can be accommodated—by approximately two
orders of magnitude. Moreover, we propose a simple
distance-dependent dispersal model in which rates of
area colonization are a function of geographic distance.

The nature and strength of the distance effect on rates
of colonization are governed by the distance-power
parameter, �. When �>0, dispersal events over long
distances are penalized, whereas long-distance dispersal
events are favored when �<0. Importantly, when �=0,
the distance-dependent dispersal model collapses to the
simpler mutual-independence model, and so M0 ⊆MD.
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Because the models are nested, we can use the Savage–
Dickey density ratio to compute Bayes factors for robust
model selection.

In the remainder of this section, we attempt to
develop an intuition regarding the behavior of this
new biogeographic approach, describe some of the
benefits and limitations of the current implementation,
and consider how this approach might be profitably
extended.

Exploring the behavior of the Bayesian biogeographic
framework—We explored the statistical behavior of our
biogeographic model and inference framework via
analyses of simulated and empirical data. The simulation
study comprised 50 dispersal data sets for 20 taxa and
600 areas that were simulated under each of eight
strengths of distance effects, �: 0, 0.25, 0.5, 1, 2, 3, 4,
and 6. For �≤3, we were generally able to infer the
true parameters. However, estimation accuracy begins
to suffer when �≥4, resulting in all parameters being
slightly underestimated. Estimation accuracy is also
high for inferences based on time-series data simulated
under large � values, so the poor accuracy appears
to emerge from the phylogenetic structure underlying
the data. Although values of �≥4 are greater than
those we have inferred from empirical data, we advise
increased caution should one’s inference lie in this range
of parameters. Using the Savage–Dickey ratio to compute
Bayes factors, we found our ability to select the correct
model was largely determined by the strength of �
(Fig. 5). Future simulation studies should be extended to
evaluate the effects of the phylogeny on inference (tree
size, shape, uncertainty, etc.), the sensitivity of the model
to various priors, and whether extreme parameter values
introduce greater errors in ancestral geographic-range
estimates.

As currently specified, the distance-dependent
dispersal-rate modifier, �(·), only changes the dispersal
rate per area, but not the summed rates of colonization
and extinction over the geographic range. Accordingly,
the equilibrium number of occupied or unoccupied
areas for the geographic range is largely determined by
the ratio of �1 and �0 (the per-area rates of colonization
and extinction, respectively). When the geographic
range involves occupation of a relatively small fraction
of available areas—as occurs when the number of areas
increases—the area colonization/extinction rate ratio
becomes small in order to explain the low observed
frequencies of area occupancy at the tips of the tree.
In such situations, these relatively simple parameters
may fail to fit the data well. Moreover, the size of
inferred ancestral geographic ranges (in terms of the
number of occupied areas) tends to be larger than those
observed at the tips of the tree. This phenomenon is
also characteristic of other parsimony- and likelihood-
based biogeographic methods (e.g., Ronquist 1997; Ree
et al. 2005; Clark et al. 2008; Buerki et al. 2011). One
solution to both problems would be to favor sampled

biogeographic histories with range sizes most similar to
a carrying-capacity or range-size parameter.

We demonstrated the empirical application of our
method with an analysis of the biogeographic history of
65 Vireya species distributed over 20 geographic areas
across the Malesian Archipelago (Brown et al. 2006).
Bayes factors strongly favored the distance-dependent
model, with a MAP estimate of �=2.65 (Fig. 7). Brown et
al. offered two hypotheses for the origin of Rhododendron:
as an old genus that arose in Australia, or as a young
genus that arose in Asia. Under our model, the posterior
of sampled biogeographic histories at the root of the tree
suggests that Asia is the most probable point from which
the genus entered the Malesian archipelago (Fig. 8).

The inferred biogeographic history of Vireya involves
several episodes of dispersal across Wallace’s Line and
a single episode of dispersal across Lydekker’s Line
(Fig. 8b,c). We note two points regarding these dispersal
events. First, the earliest dispersal across Wallace’s Line
and the single dispersal across Lydekker’s Line appear
to have occurred at approximately the same time.
Adopting 55 Ma as the crown age of the Rhododendron
phylogeny (Webb and Ree 2012) implies that these
dispersal events occurred in the Late Eocene (∼40 Ma).
At that time, many of the discrete areas in the western
part of the Malesian Archipelago collectively formed
a contiguous, emergent terrestrial region, Sundaland
(Lohman et al. 2011), which may have facilitated the
easterly dispersal of Vireya species from their ancestral
range in continental Asia across Sundaland. Moreover,
the eastern border of Sundaland was not yet bounded
by a contiguous deep oceanic trench, which may
have facilitated the continued easterly dispersal from
Sundaland into Wallacea (across Wallace’s Line) and
eastward out of Wallacea (across Lydekker’s Line) into
the eastern region of the Malesian Archipelago.

The second point pertains to the apparent prevalence
of dispersal events across Wallace’s line. The origin
of Vireya in continental Asia may have permitted the
accumulation of greater species diversity throughout
Sundaland, west of Wallacea. This would have
established a greater species-diversity gradient
across Wallace’s line than that for Lydekker’s line.
Consequently, there may have been more opportunity
for species to disperse across the western boundary
(Wallace’s line) into Wallacea than there has been
for species to disperse across the eastern boundary
(Lydekker’s line) out of Wallacea.

Advantages and limitations of the Bayesian biogeographic
method.—Increasing the number of areas offers several
benefits. The most obvious, of course, is the ability
to increase the geographic resolution of biogeographic
inference. As we increase the number of areas, discrete
biogeography better represents the continuous features
of Earth. As an example, for a clade of terrestrial species
that collectively share a global distribution, a statistical
biogeographic analysis would want to discretize the
(approximately) 1.5×108 km2 of terrestrial space into
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a meaningful number of areas. With ∼15 areas (the
previous limit), the average area would be comparable in
size to Canada (≈107 km2); for ∼1500 areas (manageable
under the current approach), the average area would be
comparable to the size of Ohio (≈105 km2).

Second, biogeographic areas have traditionally been
defined on the basis of empirical analysis. For systems
that do not have well-defined biogeographic areas,
our method allows the biogeographer to agnostically
define areas according to a grid, as was done in
our simulation study. By studying the congruence
between posteriors of dispersal histories for alternatively
discretized geographies, one could determine the
optimal discretization for a particular system, including
both the number and shapes of areas. For example, a
researcher with intimate knowledge of a study system
may derive a geographic discretization that produces
radically different ancestral-range estimates than those
based on a uniformly gridded discretization. Such a
scenario suggests that one of the two discretizations
does not properly “weight” the importance of certain
geographic areas when inferring the biogeographic
history.

Although it has benefits, the ability to increase the
geographic resolution also raises new issues. At highly
resolved spatial scales, for example, it may become more
difficult to accurately specify the occupancy of species
within individual cells of the geographic grid. Inference
under our model conditions on the biogeographic
ranges of species at the tips of the tree, and errors in
specifying these ranges are likely to lead inference astray.
One solution to this issue would be to use species-
distribution models to first predict the geographic ranges
of species, and then treat these estimated ranges as the
observed species’ geographic ranges (analogous to the
conventional practice of treating a multiple-sequence
alignment—an inference predicted from the raw data—
as the observations used to infer phylogeny).

Extending the Bayesian biogeographic method.—The real
benefit of the Bayesian framework is the tremendous
extensibility that it affords. The current implementation
makes various restrictive assumptions. For example,
we assume a fixed (and known) tree, a static geological
history, and a homogeneous environment. Below we
touch briefly on three extensions that permit the
approach to accommodate phylogenetic uncertainty,
dynamic geological history, and environmental
heterogeneity.

Our implementation assumes the phylogeny is
known without error, a luxury that exists only
under simulation. The most natural way to account
for phylogenetic uncertainty would be to exploit
a distribution of time-calibrated trees (estimated
separately) as input for biogeographic inference.
This approach is straightforward for methods that
analytically integrate over biogeographic histories:
simply define an MCMC proposal to draw a new tree
from the marginal distribution of phylogenies. However,

our model entails sampling biogeographic histories for
a specific phylogeny. Accordingly, this extension will
require the use of joint proposals for both biogeographic
history and phylogeny that maintain good mixing of
the MCMC (i.e., that ensure reasonable acceptance
probabilities). This will be a challenging task.

It is important to emphasize that our empirical
analysis was conducted under the assumption of a static
geological history: we explicitly ignore the substantial
effects of tectonic drift, changes in sea level, the
formation of islands, etc. This greatly simplifies the
analysis, of course, since biogeographic likelihoods
are computed by conditioning on a single, static
set of geographic distances. Ideally, paleogeographic
reconstructions would inform the changing proximity of
areas through time, and biogeographic inference would
be computed by conditioning on a temporally dynamic
geography. For example, consider the scenario in which
two continents drift apart as time advances, which may
be characterized as a time-ordered vector of maps, each
map corresponding to the geography appropriate to
each interval of geological time. Since our phylogeny
is also measured in units of absolute time, the rates
of gain and loss could easily be modified to condition
on the relevant set of geographical coordinates. In
the above scenario, distances between areas between
continents would increase with time, so dispersal
events between continents would become increasingly
unlikely.

By adopting a DEC-like approach wherein
cladogenesis events differ in pattern from anagenic
dispersal and extinction events, our model would
have to define transition probabilities between larger
numbers of configurations; it is trivial to compute
the model likelihood with a model that accounts
for cladogenic events by conditioning on a single
biogeographic history, but to numerically integrate over
all possible cladogenic events via MCMC will require
sophisticated proposal distributions.

Finally, we can incorporate other features of areas
beyond their latitude and longitude—such as altitude,
climate, and ecology—that may affect dispersal rates.
Morphological evolution also has a noted role in
biogeography—Bergmann’s Rule (Freckleton et al. 2003),
traits that effect long-distance dispersal ability (Carlquist
1966), etc.—and could be jointly inferred along with
dispersal patterns (Lartillot and Poujol 2011). These
factors could variously be incorporated as parameters
to construct a suite of candidate biogeographic
models. As we demonstrated for exploring the effect
of geographic distance, marginal likelihoods under
different biogeographic models could then be computed
and Bayes factors used to identify biogeographically
important model components.

Noting the simplicity of their biogeographic model,
(Ree et al. 2005) drew an analogy to the earliest work on
probabilistic models of molecular evolution—the (Jukes
and Cantor 1969) model. Although it admittedly offered
a rudimentary description of the process, this first model
nevertheless provided a critical proof of concept that
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the problem could be profitably pursued in a statistical
framework. To extend this analogy, we believe the
current contribution resembles the subsequent paper by
(Felsenstein 1981), in which he proposed the pruning
algorithm that—by virtue of conferring a tremendous
increase in computational efficiency—heralded an era of
progress in developing stochastic models for the analysis
of DNA and amino acid sequence data that has been
one of the great success stories in evolutionary biology.
We are hopeful that the small steps made here will
precipitate a similar era of productivity in the field of
biogeographic inference that will enhance our ability to
make progress on this important problem.

SUPPLEMENTARY MATERIAL

Supplementary Material, including Supplementary
figures and Vireya data files can be found at
http://datadryad.org and in the Dryad data repository
(DOI:10.5061/dryad.8346r; last accessed June 28, 2013).
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