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Abstract.—The spatial distribution of biomes has changed considerably over deep time, so13

the geographical opportunity for an evolutionary lineage to shift into a new biome depends14

on how the availability and connectivity of biomes has varied temporally. To better15

understand how lineages shift between biomes in space and time, we developed a16

phylogenetic biome shift model in which each lineage shifts between biomes and disperses17

between regions at rates that depend on the lineage’s biome affinity and location relative to18

the spatiotemporal distribution of biomes at any given time. To study the behavior of the19

biome shift model in an empirical setting, we developed a literature-based representation of20

paleobiome structure for three mesic forest biomes, six regions, and eight time strata,21

ranging from the Late Cretaceous (100 Ma) through the present. We then fitted the model22

to a time-calibrated phylogeny of 119 Viburnum species to compare how the results23

responded to various realistic or unrealistic assumptions about paleobiome structure.24

Ancestral biome estimates that account for paleobiome dynamics reconstructed a warm25

temperate (or tropical) origin of Viburnum, which is consistent with previous fossil-based26

estimates of ancestral biomes. In Viburnum, imposing unrealistic paleobiome distributions27

led to ancestral biome estimates that eliminated support for tropical origins, and instead28

inflated support for cold temperate ancestry during the warmer Paleocene and Eocene. The29

biome shift model we describe is applicable to the study of evolutionary systems beyond30

Viburnum, and the core mechanisms of our model are extensible to the design of richer31

phylogenetic models of historical biogeography and/or lineage diversification. We conclude32

that biome shift models that account for dynamic geographical opportunities are important33

for inferring ancestral biomes that are compatible with our understanding of Earth history.34

(Keywords: phylogenetics, ancestral states, biome shifts, niche conservatism, historical35

biogeography)36
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Introduction37

Biomes are ecologically and climatically distinct species assemblages that vary in size,38

shape, and continuity across geographical regions, in large part due to regional differences39

in temperature, seasonality, altitude, soil types, and continentality (Whittaker 1970; Wolfe40

1985; Olson et al. 2001; Mucina 2019). The diversity of biomes occupied by particular41

lineages also varies considerably, with some clades exhibiting strict associations with42

particular biomes, and others showing multiple transitions between biomes over time43

(Donoghue and Edwards 2014). Although it is accepted that cladewide variation in44

regional biome occupancy was generated and is maintained by evolutionary forces including45

speciation, extinction, dispersal, and adaptation to new biomes, it remains difficult to46

estimate exactly when, where, and under what conditions phylogenetic lineages first shifted47

into the biomes that their descendants inhabit today.48

In current practice, ancestral regions and biome affinities are often estimated49

independently of one another, and then relationships between regions and biomes are50

compared post hoc (Crisp et al. 2009; Weeks et al. 2014). Although such studies yield51

important evolutionary insights, the estimates themselves do not account for how lineages52

might move between regions or adapt to newly encountered biomes given the temporally53

variable spatial configuration of biomes across regions. Conceptually, the regional54

availability of a biome should influence how easily a lineage might disperse into a new55

region or shift into a new biome, an effect Donoghue and Edwards (2014) termed56

geographical opportunity. One strategy to model this effect first defines discrete regions57

that are exactly coincident with modern day biomes, and then assumes that species within58

a given region occur within the corresponding biome. Cardillo et al. (2017) carried out59

such an analysis in studying the biogeography of the Australian plant clade, Hakea60

(Protaceae), using method features developed by Matzke (2014), where total regional area61

and shared perimeter lengths tuned dispersal rates between regions. This innovative62

strategy depends crucially on the uniformity of biome composition within each region.63
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Larger, discrete regions may very well be dominated by a single biome type, yet still be64

composed of assorted dominant, subdominant, and marginal biome types at local scales.65

More importantly for our purposes, defining geographical opportunity based on66

modern biome features (such as area and shared perimeter), may be problematic in67

instances where the spatial distribution of biomes has changed considerably over time,68

since those changes should also influence when and where ancestral lineages shift between69

regions and biomes. For example, if woodlands dominated a particular region until the rise70

of grasslands, that might inform when a grassland-adapted lineage first dispersed into that71

region. That is, if the presence or absence of biomes in regions influences modern species72

ranges, then temporal variation in regional biome availability should influence our models73

of range evolution.74

To model how paleoecological dynamics might influence range evolution, Meseguer75

et al. (2015) fitted ecological niche models (ENMs) to fossil data so as to limit the76

connectivity between regions for models that estimate ancestral ranges (Ree and Smith77

2008). While this strategy is quite promising, its current form requires that the clade under78

study (Hypericum of Hypericaceae, in their case) has a sufficiently rich fossil record over79

space and time to inform the ENM. It also assumes that all lineages face the same, broad80

ecological limitations to range evolution, independent of what particular biome affinity81

each lineage possesses at a given moment. Although the quality of the fossil record is82

largely out of our control, the second assumption could be relaxed: ideally, if a clade83

contains sub-lineages that specialize in woodland or in grassland habitats, any particular84

lineages range should be principally limited by the availability of the specific biome to85

which that lineage is adapted, rather than being constrained based on a broader,86

clade-wide average of grassland and woodland lineages.87

In this paper, we aim to address the aforementioned challenges facing current88

phylogenetic models of biome shifting by incorporating four key properties: (1) that biome89

shifts and dispersal events share a common state space over biomes and regions, (2) that90
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discrete regions may contain a number of different biomes, (3) that the geographical91

structure of biomes within and between regions can vary over time, and (4) that lineages92

adapted to different biomes and located in different regions will experience different93

dispersal rates between regions and different shift rates into new biomes. We begin by94

introducing a graph-based approach to characterize the availability, prevalence, and95

connectivity of regional biomes through time, building on the framework introduced by96

Landis (2017). We then develop an event-based evolutionary process using a time-stratified97

continuous-time Markov chain that models biome shifts and dispersal given the ways in98

which biome distributions have changed over time. Because the exact influence of extrinsic99

geographical factors and/or ecological structure is bound to vary from clade to clade, the100

degree of influence of such features on the evolutionary model are treated as free101

parameters to be estimated from the data itself.102

To explore the possible importance of paleobiome structure on lineage movements103

among biomes, we apply our model to Viburnum, a genus of 165 species that originated in104

the Late Cretaceous and are today found in tropical, warm temperate, and cold temperate105

forests throughout Eurasia and the New World. We generated paleobiome graphs for these106

three mesic forest biomes across six continental regions for eight major epochs over the107

past hundred million years. Fitting the model to our Viburnum dataset all-but-eliminates108

the possibility of a cold temperate origin of the clade. This is consistent with our109

understanding of the important biogeographic role of the boreotropics during the Paleocene110

and Eocene, and with our recent fossil-based ancestral biome estimates in Viburnum111

(Landis et al. 2019).112

Methods113

Viburnum phylogeny and biogeography114
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Viburnum (Adoxaceae) is a clade of about 163 extant plant species that originated115

just before the Cretaceous-Paleogene (K-Pg) boundary, roughly 70 Ma. Previous studies of116

phylogenetic relationships (Clement et al. 2014; Spriggs et al. 2015; Eaton et al. 2017) and117

divergence times (Spriggs et al. 2015; Landis et al. 2019) provide a firm basis for118

understanding the order and timing of lineage diversification events in Viburnum. In this119

study, we focus on a subsample of 119 Viburnum species with relationships that are highly120

supported by phylogenomic data (Eaton et al. 2017; Landis et al. 2019) and whose121

divergence times were time-calibrated under the fossilized-birth death process (Heath et al.122

2014) as described in (Landis et al. 2019).123

Viburnum is found in six continental-scale regions: Southeast Asia, including the124

Indoaustralian Archipelago and the Indian subcontinent; East Asia, including China,125

Taiwan, and Japan; Europe, including the North African coast, portions of the Middle126

East, and the Azores and the Canary Islands; a North American region north of Mexico; a127

Central American region that includes Mexico, Cuba, and Jamaica; and in the South128

American Andes. Across those regions, living viburnums are affiliated with mesic forest129

biomes and show widespread parallel evolution of leaf form, leafing habit, and physiology130

coincident with transitions between warmer and colder biomes (Schmerler et al. 2012;131

Chatelet et al. 2013; Spriggs et al. 2015; Scoffoni et al. 2016; Edwards et al. 2017). Five132

extinct Viburnum lineages are known by their fossil pollen grains recovered from North133

American and European locales. Four of these are older samples (48 to 33 Ma) from134

paleofloral communities that we previosuly judged to be warm temperate or subtropical135

(Landis et al. 2019). For our analyses in this study, we defined three mesic forest biomes136

based on annual temperatures and rainfall patterns (Edwards et al. 2017). Tropical forests137

have high temperatures and precipitation year round, showing little seasonality. Warm138

temperate forests, which include paratropical, lucidophyllous, and cloud forests, vary139

seasonally in temperature and precipitation, but do not experience prolonged freezing140

temperatures during the coldest months. Cold temperate forests also experience seasonal141
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temperatures and precipitation, but average minimum temperatures drop below freezing in142

at least one of the coldest months.143

Because we are interested in how biome states and regional states evolve in tandem,144

we constructed a set of 3× 6 = 18 compound states that we call biome-region states.145

Throughout the paper, we identify the biome-region state for a lineage in biome state i and146

region state k with the notation (i,k). However, in practice, we encode biome-region states147

as integers with values from 1 to 18. Biome-region state codings for Viburnum are148

translated from Landis et al. (2019), though here we combine cloud forests and warm149

temperate forests into a single warm temperate category. Ambiguous biome states (for150

several warm or cold temperate East Asian species) were recoded as ambiguous for the151

relevant biome-region states. The time-calibrated phylogeny and the updated biome-region152

character matrix for Viburnum are hosted on DataDryad (LINK).153

Model overview154

Our aim is to model a regional biome shift process that allows changes in the155

spatiotemporal distribution of biomes to influence the likelihood of a lineage shifting156

between biomes and dispersing between regions. This process can be described in terms of157

interactions between two fundamental subprocesses: the biome shift process and the158

dispersal process.159

The biome shift process models when and where lineages shift into new biome types.160

The probability of a biome shift clearly depends on intrinsic and extrinsic factors governing161

how readily a lineage might adapt to the conditions in a new biome, a myriad of factors162

that we do not fully explore here. Rather, we focus specifically on modeling the effect of163

geographical opportunity on biome shifts (Donoghue and Edwards 2014). For example, it is164

plausible that a species inhabiting the warm temperate forests of Europe might shifted into165

the tropical biome during the Early Eocene, a period when tropical rain forests could be166

found at latitudes as extreme as 60◦ N. In contrast, a biome shift within Europe from a167
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warm temperate to a tropical biome would be less likely today or during any time after the168

global cooling trend that began with the Oligocene.169

The dispersal process models how lineages move between regions. The rate of170

dispersal between regions should depend on how connected those regions are for a given171

biome affinity. Returning to the Europe example, a tropical lineage in Southeast Asia172

might have a relatively high dispersal rate into Europe during the Early Eocene, when173

Europe was predominantly tropical and warm temperate, as compared to today, when174

Europe is dominated by temperate and boreal forests.175

Figure 1 depicts the basic behavior of the biome shift and dispersal processes in176

response to an evolving biome structure. By characterizing known features of paleobiome177

structure (Fig. 1A) into adjacency matrices (Fig. 1B), we can differentiate between178

probable and improbable phylogenetic histories of biome shifts and dispersal events (Fig.179

1C) based on time-dependent and paleobiome-informed biome shift rates (Fig. 1D) and180

dispersal rates (Fig. 1E). Of the two regional biome shift histories in Figure 1C, the first181

history invokes three events that are fully congruent with the underlying paleobiome182

structure. The second history requires only two events, yet those events are incongruent183

with the paleobiome structure. But which regional biome shift history is more probable?184

Assigning probabilities to histories must depend not only on the phylogenetic placement185

and age of the regional biome shift events, but also on the degree to which the clade186

evolves in a paleobiome-dependent manner. We later return to how this unknown behavior187

of the evolutionary process may be estimated from phylogenetic data.188

An evolving spatial distribution of biomes through time189

Biome availability and connectivity has evolved over time. We summarize these190

dynamics with a series of time-dependent graphs that are informed by the paleobiological191

and paleogeographical literature (Figure 2). To define our paleobiome graphs, we consulted192

global biome reconstructions generated by Wolfe (1985), Morley (2000), Graham (2011,193
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Figure 1: Cartoon of the relationship between paleobiome structure and a regional biome
shift process. The left and right panels are aligned to the same geological time scale that is
divided into a Hot (red) interval followed by a Cold (blue) interval. (A) Maps of paleobiome
structure with two regions, East (E) and West (W), and two focal biomes of interest, Hot (H)
and Cold (C), in which the expansive Hot biome is replaced by the Cold biome as the East and
West regions separate. (B) Paleobiome adjacency matrices encode the availability of biomes
within regions and the connectivity of biomes between regions based on whether paleobiome
features are strong (dark) or weak (light). Diagonal elements reflect biome availability within
regions while off-diagonal elements report biome connectivity between regions. (C) Two
possible regional biome shift histories for a phylogeny with a western, hot-adapted (HW)
origin. Lineages shift between biomes at rates that depend on the availability of biomes
within the lineage’s current region and disperse between regions at rates that depend on
connectivity of the lineage’s current biome between regions. The two histories require (top)
or do not require (bottom) evolutionary events to be congruent with paleobiome structure.
(D) Time-dependent biome shift rates for the four possible events: HW to CW, CW to HW,
HE to CE, and CE to HE. (E) Time-dependent dispersal rates for the four possible events:
HW to HE, HE to HW, CW to CE, and CE to CW.
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2018), Fine and Ree (2006), Jetz and Fine (2012), and Willis and McElwain (2014) which194

we then corroborated with biome reconstructions quantitatively estimated using the195

BIOME4 model (Prentice et al. 1992; Kaplan et al. 2003) for times corresponding to the196

Early-Mid Eocene (Herold et al. 2014), the Late Ecoene and the Oligocene (Pound and197

Salzmann 2017), the Mid-Late Miocene (Pound et al. 2011, 2012), and the Pliocene198

(Salzmann et al. 2008, 2009). For epochs that lack published BIOME4 reconstructions, we199

compared our paleobiome maps to reconstructions built from proprietary data kindly200

provided by P. J. Valdes (pers. comm.).201

We classified the availability and connectivity of biomes within regions into three202

categories—dominant, subdominant, and marginal—that were appropriate to the scale of203

the regions and the precision of the ancestral biome estimates. Dominant biomes, with a204

strong presence, displayed ≥25% regional coverage, subdominant biomes with a weak205

presence covered <25% of a region, while biomes with marginal presence covered < 1% of a206

region. Likewise, the connectivity of a biome between two regions at a given time is scored207

as either strong, weak, or marginal, depending on how continuously biomes are inferred to208

have been distributed near regional adjacencies. Independent of the distribution of biomes,209

we similarly scored the geographical connectivity between regions as strong, weak, and210

marginal, using the equivalent of the modern connection between Central and South211

America through the Isthmus as Panama to minimally qualify as strong connectivity, and212

distances between modern Europe and North America to represent weak connectivity.213

Together, the availability and connectivity for each region, each biome, and each timeslice214

is encoded into a series of paleobiome graphs, which we later use to define the rates at215

which biome shift and dispersal events occur.216

Our paleobiome graphs capture several important aspects of how mesic forest217

biomes moved and evolved (Fig. 2). The Late Cretaceous through the Paleocene and Early218

Eocene was a prolonged period of warm, wet conditions during which the poles had little to219

no ice. Throughout that time, tropical forests were dominant in all six of our regions, while220
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warm temperate forests dominated only throughout East Asia, Europe, and North221

America. Together, the tropical and warm temperate forests formed a beltway of222

boreotropical forests around the northern hemisphere (Wolfe 1985; Morley 2000; Willis and223

McElwain 2014; Graham 2011, 2018), that persisted through the Mid/Late Eocene. With224

the Oligicene, the opening of the Drake Passage and the closure of the Tethys Sea225

redirected global ocean currents. Together with steep declines in atmospheric CO2 levels,226

this ushered in cooler and drier conditions worldwide. This global climatic change227

progressively restricted tropical forests to more equatorial regions, inducing the disjunction228

we find among modern tropical forests (Latham and Ricklefs 1993; Wiens and Donoghue229

2004; Donoghue 2008). As the boreotropical forests receded, they were first replaced by230

warm temperate forests, and then eventually by cold temperate and boreal forests.231

Following this global revolution of biome structure, connectivity between Old World and232

New World tropical forests never again matched that of the Paleocene-Eocene233

boreotropical beltway. Our paleobiome graphs are designed to be simple, but not too234

simplistic to study how phylogenetic biome shift models respond to a geographical biome235

structure that evolves with time.236

Figure 2 helps illustrate how a lineage might evolve with respect to different237

distributions of biomes within and between regions over time. A lineage that freely238

disperses between regions and shifts between biomes regardless of the historical condition239

of the planet might transition between regions under fully connected matrices (Null, first240

column). Lineages that are only dispersal-limited by terrestrial connectivity disperse under241

the adjacency constraints encoded in the second column of matrices (Geographical, second242

column). However, lineages that are dispersal-limited by biome availability and243

connectivity might disperse according to the paleobiome patterns shown in the third, fourth244

and fifth columns (tropical, T; warm temperate, W; and cold temperate, C). For example,245

a lineage that is strictly adapted to the warm temperate biome would disperse according to246

the warm temperate series of paleobiome graphs (fourth column). If that lineage shifted its247
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Figure 2: Availability and connectivity of biomes from Late Cretaceous (100 Ma) to Present.
Adjacency matrices are used as empirical priors to shape the time-stratified phylogenetic
biome shift process. Rows correspond to eight time intervals, while columns correspond to
regional features, specifically full (or null) connectivity (black), simple geographical connec-
tivity (brown), or features involving the tropical (red), warm temperate (green), and cold
temperate (blue) forest biomes. The matrix for each time and feature encodes the availabil-
ity of (the diagonal) and the connectivity between (off-diagonal) regions for that feature at
that time, where matrix rows and columns correspond to source and destination regions,
respectively. Availability/connectivity is marked as being strong (dark), weak (medium), or
marginal (light).

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/832527doi: bioRxiv preprint first posted online Nov. 7, 2019; 

http://dx.doi.org/10.1101/832527
http://creativecommons.org/licenses/by/4.0/


affinity from a warm temperate to a tropical biome, that lineage would thereafter shift248

between biomes and disperse between regions under the adjacency matrix structures of the249

tropical biome (third column) until the lineage next shifted biomes. However, biome shift250

rates also should depend on what biomes are locally accessible. For example, a North251

American lineage would have the geographical opportunity to shift from warm temperate252

into tropical biomes during the Paleocene, an epoch when both biomes are dominant in253

North America. But North American tropical forests decline and then disappear254

throughout the Oligocene and Miocene, extinguishing the opportunity for such a biome255

shift during more recent times. The next section formalizes how we model the complex256

interactions between biomes, regions, phylogeny, and time with these dynamics in mind.257

A time-stratified regional biome shift model258

The regional biome shift process may be viewed as a model that defines the259

interactions (if any) of its two subprocesses, the biome shift process and the dispersal260

process. We model biome shifts using a simple continuous-time Markov chain (CTMC)261

with time-stratified rates (i.e. piecewise constant time-heterogeneous rate matrices; Ree262

et al. 2005; Buerki et al. 2011; Bielejec et al. 2014; Landis 2017). Because transition rates263

between regions depend in part on a lineage’s biome affinity, and rates of shifting between264

biomes depend in part on a lineage’s geographical location, the two characters do not265

evolve independently. To impose interdependence between biomes and regions, we define a266

rate matrix over the compound state space using the approach of (Pagel 1994), while also267

drawing on insights pioneered in newer trait-dependent models of discrete biogeography268

(Sukumaran et al. 2015; Sukumaran and Knowles 2018; Matos-Marav́ı et al. 2018; Lu et al.269

2019; Klaus and Matzke 2019).270

Accordingly, we define the CTMC to operate on the compound biome-region state,271

(i, k), where i is the biome and k is the region. With this in mind, our goal is to compute272

the probability of a lineage transitioning from biome i in region k to biome j in region l, or273
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(i, k) into (j, l). First, we take βi,j to model the shift rate between biomes i and j, and δk,l274

to model the dispersal rate between regions, δk,l. Importantly, the values of β and δ275

themselves do not directly depend on time. We eventually multiply these “base rates” by276

time-dependent paleogeographical and paleoecological factors represented in our a277

time-stratified (or epoch) model.278

Computing the transition probabilities for an epoch model requires that we define279

an instantaneous rate matrix Q(m) for any supported epoch, m. Following Landis (2017),280

we define the rate matrix Q(m) as the weighted average of several rate matrices, each281

capturing different paleogeographical features282

Q(m) = w1Q1 + wGQG(m) + wBQB(m). (1)

The three matrices on the right-hand side of Equation 1 are the uniform rate283

matrix, Q1, the geographical rate matrix, QG, and the biome rate matrix, QB. In reference284

to Figure 2, we wish to learn the relative influence of the uniform (first column), geography285

(second), and biome (third, fourth, or fifth) matrix features on the biome shift process.286

The first rate matrix (Q1) may be considered a “null” rate matrix that sets the287

relative transition rates between all pairs of regions, and separately between all pairs of288

biomes, as equal (to one).289

[Q1](i,k),(j,l) =


βi,j if biome shift (i 6= j)

δk,l if region shift (k 6= l)

0 if biome and region shift (i 6= j and k 6= l)

The effect is that biome shifts between biomes i and j follow the rates βi,j and dispersal290

events follow the rates δk,l regardless of the age of a lineage or the lineage’s biome-region291

state. As we develop rate matrices for geography (QG) and and biomes (QB) below, the292

second role for Q1 is that it allows for lineages to disperse or shift regardless of whether the293
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connectivity/availability of the involved regions or biomes are scored as strong, weak, or294

marginal.295

The second rate matrix (indexed G for “geography”, QG) is structured according to296

biome-independent paleogeographical features, such as the simple terrestrial connectivity297

between regions. Connectivity is encoded as either as strong, weak or marginal in the298

adjacency matrix, AG(m). Because we do not know precisely what, if any, influence strong,299

weak, and marginal features should have upon the biome shift process, we allow each class300

of features to have a range of (constrained) influences on the adjacency matrix.301

Specifically, we set ystrong = 1 and ymarg = 0, then treat yweak as an estimated parameter302

that satisfies ymarg < yweak < ystrong. Referring to Figure 2 again, these parameters control303

the degree of contrast between cells across all matrices.304

[QG(m)](i,k),(j,l) =


βi,j if biome shift (i 6= j)

δk,l × [AG(m)]k,l if region shift (k 6= l)

0 if biome and region shift (i 6= j and k 6= l)

The third rate matrix (indexed B for “biome”, QB) defines the shift rates between305

biomes and the dispersal rates between regions to depend on the spatiotemporal306

distribution of biomes. A lineage’s biome shift rate depends on whether the receiving307

biome, j, has a strong, weak, or marginal presence in the region it currently occupies, k.308

Likewise, the dispersal rate for a lineage that is currently adapted to biome type i depends309

on whether the source region, k, and destination region, l, share a strong, weak, or310
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marginal connection.311

[QB(m)](i,k),(j,l) =


βi,j × [Aj(m)]k,k if biome shift (i 6= j)

δk,l × [Aj(m)]k,l if region shift (k 6= l)

0 if biome and region shift (i 6= j and k 6= l)

It is crucial to recognize that QB(m) defines shift rates involving biome j to depend on the312

adjacency matrix for biome j during timeslice m. This key property means that lineages313

currently adapted to biome j disperse with rates according to the interregional connectivity314

of biome j, and lineages newly adapting to biome j do so at a rate depending on the local315

availability of biome j.316

The transition rates (and probabilities) between biome-region pairs are not expected317

to be symmetrically equal across time intervals. For example, if biome j first appears in318

region k during time interval m+ 1 then we see an increase in the biome shift rate, i.e.319

[Q(m)](i,k),(j,k) < [Q(m+ 1)](i,k),(j,k). Nor are transition rates necessarily symmetrically320

equal within a given time interval. If region k contains biome i during time interval m, but321

region l does not, then we find that lineages adapted to biome i disperse more easily from k322

into l than l into k, i.e. [Q(m)](i,k),(i,l) < [Q(m)](i,l),(i,k). Similarly, if region k contains323

biome i but not biome j, then lineages inhabiting region k tend to shift more easily from324

biome i into j than from j into i, i.e. [Q(m)](i,k),(j,k) < [Q(m)](j,k),(i,k).325

Fluctuating asymmetries in the rates over time means that each biome-region state326

may exhibit different source-sink dynamics across that timescale. During a period of low327

accessibility, a biome-region state might rebuff immigrants and lose occupants (and so act328

as a source) but then gain and retain inhabitants during a later phase should that329

biome-region become a local refugium (and so act as a sink) (Goldberg et al. 2005). These330

fluctuating source-sink dynamics may be characterized by the stationary distribution,331

which defines the expected proportion of lineages found in each biome-region state332
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assuming lineages evolve along an infinitely long branch within a given time interval.333

Biome-regions that are easy to enter and difficult to leave tend towards higher stationary334

probabilities for a given time interval. We approximate the stationary probability for335

biome i in region k during epoch m with336

π(m)(i,k) =
[
eµQ(m)

]
1,(i,k)

where µ is a rate taken to be sufficiently large that stationarity is reached. We validate337

that all rows have arbitrarily similar transition probabilities, which lets us take any row338

(i.e. the first row) to represent the stationary probabilities.339

0.00

0.25

0.50

0.75

1.00

0204060

Age (Ma)

L
in

e
a

g
e

-s
ta

te
 p

ro
p

o
rt

io
n

s

Biome+Region
Trop+SEAs Trop+EAs Trop+Eur Trop+NAm Trop+CAm Trop+SAm

Warm+SEAs Warm+EAs Warm+Eur Warm+NAm Warm+CAm Warm+SAm

Cold+SEAs Cold+EAs Cold+Eur Cold+NAm Cold+CAm Cold+SAm

Figure 3: Stationary distribution of biome-region states under the paleobiome model. The
stationary probabilities across biome-regions (y-axis) vary with respect to time (x-axis). Sta-
tionary probabilities were computed assuming that biome and region shifts occur in roughly
equal proportion (β = δ = 0.5), that lineages disperse primarily through the appropriate
biome graph (wB = 0.8, wG = 0.16, and w1 = 0.04), and that dominant biomes primarily
define the structure of biome graphs (ystrong = 1.0, yweak = 0.1, ymarg = 0.0). Parameters
were chosen to show interesting variation. Note, all stationary probabilities would be equal
over all times if w1 = 1.

The time-dependent source-sink dynamics in Figure 3 show how the availability of340

and connectivity between regional biomes structures each time interval’s stationary341
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distribution. Stationary probabilities before the Oligocene tend to favor tropical biomes in342

all regions, but favor cold temperate biomes afterwards. This means that if the historical343

spatial structure of biomes is relevant to biogeography, then lineages originating in the344

Paleogene would more likely be adapted to tropical than to cold temperate forests simply345

because cold temperate forests were a more marginal biome during that period of Earth’s346

history.347

We can now completely define the time stratified rate matrix, Q(m), and the348

stationary frequencies at the root of a phylogeny, π(mroot), where mroot is the epoch index349

corresponding to the root node age. Together, these model components let us compute the350

probabilities of lineages transitioning from one biome-region pair to another while351

accounting for the spatiotemporal dynamics of biomes, and thus compute the phylogenetic352

model likelihood with the discrete state pruning algorithm (Felsenstein 1981).353

Now that we have fully defined the model, there are several implicit properties that354

are worth stating explicitly. First, a lineage cannot both shift its biome affinity and355

disperse into a new region in the same moment of time; one event is needed for each356

transition, and so event order matters. Second, the relative importance of the matrix357

feature weights (w1, wG, wB) and of the availability/connectivity weights (yweak) are358

estimated from the data: the matrix Q(m) reduces to the “null” matrix Q1(m) when359

w1 = 1, while the importance of the historical structure of biomes is most pronounced360

when wB and ystrong are large compared to other w and y parameters. Third, the process361

models lineages as being predominantly present in a single region and biome at a time362

without influencing speciation or global extinction rates, both to simplify the exposition of363

the method, but also to reduce computational burden. The Discussion pays more attention364

to these properties.365

Bayesian inference366

The Bayesian posterior density was estimated using the Markov chain Monte Carlo367
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(MCMC) algorithm implemented in RevBayes (Höhna et al. 2016). The first 50% of368

posterior samples were discarded as burn-in. All parameter estimates have effective sample369

sizes well over 200. Two independent chains were run per analysis to verify MCMC370

convergence. We analyzed our data under three model settings: the Paleobiome setting371

that used the time-heterogeneous graphical structure presented in Figure 2; the Modern372

Biome setting that used the graphical structure of “Present” to represent all time intervals;373

and the Null Biome setting that ignored all regional and biome structure by fixing w1 = 1.374

Departing from the general model description above, we re-parameterized our375

applied model to eliminate informative priors wherever possible. This helped ensure that376

our posterior estimates are driven by the data through the likelihood function, not the377

prior. We assigned uninformative prior distributions to our graph weights,378

(w1, wL, wB) ∼ Dirichlet(1, 1, 1), and to our graph feature strength parameter,379

yweak ∼ Uniform(0, 1). We treated each biome shift rate as an independently estimated380

parameter, βi,j ∼ Uniform(0, 1), but fixed the biome shift rate between tropical and cold381

temperate biomes equal to zero. Because we already constrained biome-independent382

dispersal between regions through graphical structures (QG) and weight parameters (w1383

and wG), we fixed the relative dispersal rate to δk,l = 1 (which is potentially rescaled by QG384

and wG). Thus, the relative biome shift rates β and dispersal rates δ have values between 0385

and 1. To balance the relative proportion of biome shifts to dispersal events, we multiply β386

by the factor fβ ∼ Uniform(0,1) and multiply δ by fδ = (1− fβ). Finally, we rescaled the387

instantaneous rate matrix, Q, for the entire evolutionary process by a global clock388

parameter, µ ∼ LogUniform(10−4, 101), that is uniformly distributed over orders of389

magnitude.390

We summarized our results in several ways. Ancestral state estimates show the391

posterior probability for each node’s biome-region state. Only the three most probable392

states are shown, with all less probable states and their probabilities collapsed into a single393

‘?’ state. The ancestral biome-region state for the root node is magnified to improve394
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visibility.395

Lineage-state through time estimates are computed from posterior distributions of396

stochastically mapped histories. We computed the posterior mean count of lineage-states397

through time as the number of lineages in each state for each time bin across posterior398

samples divided by the total number of posterior samples. Lineage-state counts were399

converted into lineage-state proportions by dividing each count by the total number of400

lineages in that time bin to give proportions that lie between 0 and 1. In addition, we401

classified whether or not each lineage-state for each time bin was congruent with any402

locally prominent biome as defined by the paleobiome graph (Fig 2). Each binned state403

was labeled as a biome mismatch if the lineage’s biome was only marginally present in the404

lineage’s region. Otherwise, the state was labelled as a biome match. To summarize these405

results, we also computed the proportion of tree length where lineage states match or406

mismatch paleobiome structure in three ways: for the total tree length, for tree length407

before the Oligocene (>34 Ma) and for tree length after the Oligocene (≤ 34 Ma).408

Finally, we were interested in the ordered event series that resulted in major409

transitions between biomes and regions. For biomes A, B, and C and regions X, Y , and Z,410

we named the six series patterns for pairs of events. Series in which species shift biomes411

and then disperse (AX → BX → BY ) are called biome-first event series. In contrast,412

region-first series have dispersal followed by a biome shift event (AX → AY → BY ). The413

remaining four event series involve two consecutive biome shift or two dispersal events.414

Biome reversal (AX → BX → AX) and region reversal (AX → AY → AX) sequences415

indicate event series in which the lineage departs from and then returns to its initial state416

(AX). Analogously, biome flight (AX → BX → CX) and region flight (AX → AY → AZ)417

sequences are recognized by series of two biome shifts or two dispersal events that leave the418

lineage in a new state (CX or AZ) relative to the lineage’s initial state (AX). We419

computed the proportion of each series type for a single posterior sample by classifying420

stochastically mapped state triplets (event series of length two) in our phylogenetic tree421
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using a simple root-to-tip recursion. We processed each posterior sample by taking the422

stochastically mapped root state to be the second state in the triplet, Xroot, then sampling423

the preceding state, Xsubroot, from the sampling distribution obtained by Bayes rule424

P (Xsubroot = (i, k) | Xroot = (j, l), Q(mroot)) ∝
[Q(mroot)](i,k),(j,l)∑

(x,y) 6=(i,k)

[Q(mroot)](i,k),(x,y)
×

[π(mroot)](i,k)
[π(mroot)](j,l)

where Q(mroot) is the root node’s rate matrix and π(mroot) is its stationary distribution425

with values determined by the evaluated posterior sample. Following that, we executed a426

recursion towards the tips of the tree to collect changes in the stochastic mapping for each427

lineage’s biome-region state, classifying the state triplet’s type, and updating the triplet428

states appropriately (i.e. the new second and third states replace the old first and second429

states) with each step of the recursion.430

Finally, we wished to examine if and how the distribution of evolutionary events431

changed with time under alternative assumptions about the biome structure. We were432

particularly interested in two classes of event proportions: proportions of various types of433

biome shift and dispersal events, and proportions of the various types of event series. To434

estimate the proportions of biome shift and dispersal event types through time, we435

computed the posterior mean count for each distinct biome shift and dispersal event type436

per 1 Myr interval, then divided that count of each interval by the total number of events437

per interval. Although we normalized our proportions using all 126 distinct dispersal and438

biome shift event types, our results only display the four biome shift and four dispersal439

event types among all combinations of the warm and cold temperate forests of East Asia440

and North America. In a similar manner, we computed the posterior proportions for all six441

types of event series, using the time of the second event in each series for each series age.442

Our presented event and event series proportions through time were smoothed by a locally443

estimated smoothing regression (LOESS) using ggplot2 (Wickham 2016). After444

smoothing, confidence intervals were truncated at zero to exclude rare events from having445
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negative proportions.446

Simulation experiment447

We measured how reliably we can select models in which biome structure influences the448

biome shift process (wB > 0) for Viburnum with simulated data. All simulations assumed449

the same Viburnum phylogeny used in the empirical example and used the same biome and450

regions designated by the paleobiome structure model. We simulated data under five451

conditions that primarily adjust the relative weight for wB, named: null effect, where452

(w1, wG, wB) = (1, 0, 0); weak effect, where (w1, wG, wB) = (1, 2, 4)/7; medium effect, where453

(w1, wG, wB) = (1, 2, 8)/11; strong effect, where (w1, wG, wB) = (1, 2, 16)/19; and very454

strong effect, where (w1, wG, wB) = (1, 2, 32)/35; with each denominator ensuring the455

weights sum to 1. For all conditions, we assumed fβ = 0.75, fδ = 0.25, and yweak = 0.1.456

Biome shift rates were set to equal 1, except transitions between cold temperate and457

tropical forests, which were set to 0. The event clock was set to µ = 0.03, except for the458

null condition, which was assigned a slower rate of µ = 0.01 to account for the fact that459

fewer event rate penalties are applied to it than the non-null conditions. We then460

simulated 100 replicate datasets in RevBayes for each of the four conditions under the461

regional biome-shift model described above, and estimated the posterior density for each462

simulated dataset using MCMC in RevBayes.463

We were primarily concerned with how our posterior estimates of wB respond to464

differing simulated values for wB. To summarize this, we first report the posterior median465

values of wB across replicates so they may be compared to the true simulating value. Next,466

we computed what proportion of our replicates select a complex model allowing wB > 0 in467

favor of a simpler model where wB = 0 using Bayes factors. Bayes factors were computed468

using the Savage-Dickey ratio (Verdinelli and Wasserman 1995), defined as the ratio of the469

prior probability divided by the posterior probability, evaluated at the point where the470

complex model collapses into the simpler model (i.e. wB = 0, in our case). We interpret471
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the strength of significance for Bayes factors as proposed by Jeffreys (1961), requiring at472

least ‘Substantial’ support (BF > 3) to select the more complex model (wB > 0).473

Results474

Simulation experiment475

Simulated datasets yielded larger estimates of wB and more soundly rejected null476

models (wB = 0) as the effect strength wB increased from Weak to Very Strong (Fig. 4).477

No datasets simulated under the Null condition (wB = 0) signalled Substantial support (or478

greater) for the paleobiome-dependent model (wB > 0), indicating a low false positive rate.479

Only 9% of datasets simulated under Weak effects (wB = 4/7 ≈ 0.57) generated No480

support for the wB > 0 model, and only ∼32% of those replicates qualified as Substantial481

support or greater. Data simulated under the Moderate condition (wB = 8/11 ≈ 0.73)482

reject the simple model 57% of the time with at least Substantial support. Under Strong483

(wB = 16/19 ≈ 0.84) simulation conditions, we selected models where wB > 0 in 81% of484

cases, with Strong support in 65% of cases. Data simulated under Very Strong effects485

(wB = 32/35 ≈ 0.91) generated support for models with wB > 0 88% of the time, with over486

half of all replicates (54%) drawing Very Strong or Decisive support. Coverage frequency487

among simulations was consistently high across conditions, but with fairly wide HPD95488

credible intervals (Fig. 4A). Because the posterior probability of wB = 0 is used to489

approximate Bayes factor ratios, their relationship is made apparent by noting that the490

density of HPD95 lower bound estimates close to the value wB = 0 (Fig. 4A) is correlated491

with the proportion of simulations that award no support to the wB > 0 model (Fig 4B).492

Ancestral biomes for Viburnum493
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Figure 4: Simulation experiment results. One hundred datasets were simulated under five
conditions that varied the strength of wB, then fitted to the paleobiome model to assess
model performance. (A) Markers show the true simulated strength for wB (closed square),
the posterior median values estimated from simulated replicates (open circles), the median
of those posterior medians (closed circle), and the upper and lower bounds of the 95%
highest posterior density (open triangles). The coverage frequency reports the proportion of
simulation analyses in which the simulating value of wB is falls within the credible interval.
(B) Bars report the proportions of simulated datasets that supported the model where wB >
0, categorized by the strength of that support in terms of Bayes factors (Jeffreys 1961).

Although Viburnum likely originated in East Asia regardless of the biome structure model494

(p > 0.99), no model reconstructed a single ancestral biome affinity with probability495

greater than p > 0.95 (Figure 5). Where the Paleobiome analysis inferred East Asian496

biome affinities that favored a warm temperate (p = 0.88) or tropical (p = 0.09) but not a497

cold temperate (p = 0.03) origin, the Modern Biome analysis favored a cold temperate498

(p = 0.67) then warm temperate (p = 0.31) origin for Viburnum while assigning negligible499

probability to a tropical origin (p = 0.01). Relative to the Paleobiome estimates, the Null500

Biome analysis also assigned higher probabilities to colder biomes (warm, p = 0.52; warm,501

p = 0.45; tropical, p = 0.02). Early diverging Viburnum lineages tended to follow502

warm/tropical biome affinities under the Paleobiome analysis or the cold/warm affinities503

under the Modern/Null Biome analyses before the Oligocene (>34 Ma). During the504

Oligocene (34–22 Ma), when cold temperate forests first expanded, many nodes still505
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retained the warmer or colder biome affinities characteristic of the biome structure model,506

such as the most recent common ancestor (MRCA) of V. reticulatum and V. ellipticum or507

the MRCA of V. rufidulum and V. cassinoides. Otherwise, most ancestral biome inferences508

were consistent across the three models, beginning with the Mid/Late Miocene (<16 Ma).509

Figure 6A–C shows that the three biome structures recovered different proportions510

of ancestral lineage-states through time, particularly before the Mid/Late Miocene (>16511

Ma). Between the Paleocene and the Early Miocene, tropical lineages in East Asia and512

Southeast Asia constituted >20% diversity, declining to ∼12% of modern diversity under513

the Paleobiome analysis. Cold temperate lineages were nearly absent until the end of the514

Oligocene (34 Ma), but steadily rose to constitute roughly 25% of diversity by the515

Early/Mid Miocene (ca. 20 Ma). By comparison, Modern Biome estimates enriched the516

proportion of cold temperate viburnums, while reducing support for warm temperate and517

nearly eliminating support for tropical origins; tropical lineages remained in comparatively518

low proportion until the Miocene (< 22 Ma). The Null Biome analysis estimated519

proportions of warm and cold temperate lineages similar to those of the Modern Biome520

analysis from the Late Cretaceous (100 Ma) until the Oligocene (34 Ma), but with more521

Southeast Asian warm temperate lineages throughout.522

For what proportion of time did lineages have biome affinities that were congruent523

with locally accessible biomes? Biomes rarely mismatched between lineages and regions524

under the Paleobiome setting (1.1% of tree length), with the mismatches increasing under525

the Modern Biome (8.6%) and Null Biome (8.7%) settings. Lineages were most often526

mismatched with their regions’ biomes before the Oligocene (Figures 6D–F), where the527

pre-Oligocene proportion of mismatched branch lengths was always higher (Paleobiome,528

5.8%; Modern Biome, 52.6%; Null Biome, 47.1%) than the post-Oligocene proportion529

(Paleobiome, 0.3%; Modern Biome, 0.8%; Null Biome, 1.7%) or the treewide proportions530

(above).531

To illuminate why the Paleobiome analysis produces distinctly warmer ancestral532
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Figure 6: Proportions of ancestral Viburnum lineages with biome-region state frequencies
through time. The left column (A–C) shows the lineages biome-region states, where regions
differ by color and biomes differ by shading (see legend). Proportions of reconstructed lin-
eages in each biome-region state are shown for estimates under the Paleobiome (A), Modern
Biome (B), and Null Biome (C) settings. The right column (D–F) shows the proportion
of lineages with biome states that “match” (dark) or “mismatch” (light) the non-marginal
biomes that are locally accessible given any lineage’s location, as defined under the Paleo-
biome structure (see main text for details). Proportions of reconstructed lineges with biome
match and mismatch scores are shown for estimates under the Paleobiome (D), Modern
Biome (E), and Null Biome (F) settings.

biome estimates, we turn to the fitted stationary probability for the root state, π(mroot),533

(Figure 7). Within East Asia, root node stationary probabilities estimated under the534

Paleobiome setting favored warm temperate or tropical forests over cold temperate forests535

(πTrop+EAs = 0.06, πWarm+EAs = 0.10, πCold+EAs = 0.02). The Modern Biome stationary536

probabilities instead favored cold or warm temperate forests over tropical forests537
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Figure 7: Stationary probabilities at root node during the Late Cretaceous. Posterior sta-
tionary probabilities for π(mroot) are given for each biome structure model biome-region state
(rows) and for each biome+region state (colors) as posterior medians (points) and credible
intervals (HPD70, thick lines; HPD95, thin lines).

(πTrop+EAs = 0.03, πWarm+EAs = 0.07, πCold+EAs = 0.08). Like the Modern Biome analysis,538

stationary probabilities under the Null Biome setting tended towards cold or warm539

temperate forests. (πTrop+EAs = 0.04, πWarm+EAs = 0.06, πCold+EAs = 0.06), noting that the540

stationary probability per biome is uniform across regions by the design of the model.541

Despite such differences between the Paleobiome and Modern Biome analyses in542

their ancestral state estimates and stationary probabilities, their parameter estimates for543

the base rate of change (µ), the proportion of biome shifts (fβ) to dispersal events (fδ), and544

the graph weights (w1, wG, wB) were remarkably similar (Table 1). Both biome structure545
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Biome structure
Parameter Paleo Modern Null

µ
[0.03, 0.10]

0.06
[0.03, 0.09]

0.05
[0.02, 0.06]

0.03

fβ [0.75, 0.94]
0.85

[0.69, 0.93]
0.83

[0.85, 0.97]
0.92

fδ [0.06, 0.25]
0.15

[0.07, 0.31]
0.17

[0.03, 0.15]
0.08

βTW [0.20, 1.00]
0.67

[0.05, 0.95]
0.50

[0.10, 1.00]
0.54

βWC [0.47, 1.00]
0.81

[0.48, 1.00]
0.81

[0.39, 1.00]
0.74

βCW [0.09, 0.62]
0.28

[0.11, 0.85]
0.39

[0.08, 0.66]
0.31

βWT [0.01, 0.80]
0.38

[0.34, 1.00]
0.65

[0.33, 1.00]
0.72

w1 [0.00, 0.07]
0.01

[0.00, 0.08]
0.02 1

wG [0.00, 0.18]
0.04

[0.00, 0.20]
0.04 0

wB [0.78, 1.00]
0.94

[0.76, 1.00]
0.93 0

yweak [0.27, 0.99]
0.65

[0.09, 0.95]
0.52 1

Table 1: Regional biome shift parameter estimates. Posterior median estimates are in bold
and 95% highest posterior densities are in brackets. Fixed parameters under the Null Biome
analysis do not have brackets.

models estimate posterior means for wB greater than 0.91; i.e., stronger in effect than546

assumed under the Very Strong simulation scenario (Figure 4). Both models estimated547

credible intervals for wB with lower bounds greater than 0.75 and posterior probabilities of548

wB = 0 that were indistinguishable from zero, each corresponding to “Decisive” support for549

their respective biome structure models. Because inference under the Null Biome model set550

yweak = 1, posterior estimates of (w1, wG, wB) are indistinguishable from the prior.551

Parameter estimates for the relative biome shift rates differed across the three biome552

structure models, however. The Paleobiome estimates favor hot-to-cold shifts553

(βTW = 0.63 > βWT = 0.43 and βWC = 0.82 > βCW = 0.29) while the Modern Biome554
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estimates favor shifts leaving the warm temperate biome (βTW = 0.44 < βWT = 0.65 and555

βWC = 0.80 > βCW = 0.42), as do the Null Biome estimates (βTW = 0.55 < βWT = 0.76556

and βWC = 0.73 > βCW = 0.32).557

Biome shift or dispersal event
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Figure 8: Smoothed proportions of inferred events and event series through time for Vibur-
num. The left column (A–C) presents the proportions of estimated biome shift and dispersal
events with respect to time, showing only the eight biome shift and dispersal events among
the warm and cold temperate forests of East Asia and North America. Proportions of events
are shown for inferences under the Paleobiome (A), Modern Biome (B), and Null Biome (C)
settings. The right column (D–F) shows the proportions of the six types of event series with
respect to time (defined in main text). Each event series type is labeled with a ‘state triplet’
to indicate either transitions in the biome (A, B, C) or region (X, Y, Z) state. Proportions
of event series are shown for inferences under the Paleobiome (D), Modern Biome (E), and
Null Biome (F) settings.

Finally, we found that the Paleobiome analysis estimated proportions of biome shift558

and dispersal events that are more temporally dynamic than those proportions estimated559
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under the Modern Biome and Null Biome models (Fig. 8A–C). Under the Paleobiome560

estimates, dispersal events from East Asia into North America within the warm temperate561

biome were relatively common throughout the Late Eocene. With the onset of Oligocene562

cooling, biome shifts from warm into cold temperate forests in East Asia rose from low to563

high proportions to become the most frequent transition type. In contrast, event564

proportions under the Modern Biome and Null Biome analyses reconstructed high565

proportions of biome shifts between the warm and cold temperate forests of East Asia since566

Viburnum first originated in the Late Cretaceous through the present. Paleocene dispersal567

of cold temperate lineages from East Asia into North America was also found to be568

relatively common when compared to the Paleobiome reconstruction. Regarding the event569

series proportions, biome reversal, biome-first, and region-first series were generally more570

common than biome flight, region flight, and region reversal series (Fig. 8). The biome571

reversal event series was the most common event series type across all time intervals under572

the Modern Biome and Null Biome analyses, but not under the Paleobiome analysis. With573

the Paleobiome model, we found that the proportion of biome reversal series was lower,574

and the proportion of region-first series was higher, when compared to the other biome575

structure analyses, together creating a time interval between the Late Eocene and the576

Middle Miocene during which region-first events outpaced all other types of series.577

Discussion578

The probability that a lineage will shift into a new biome is determined in part by579

geographical opportunities. Because the availability and connectivity of biomes varies580

across regions, evolutionary lineages do not share the same geographical opportunities to581

adapt to new biomes. Moreover, those geographical opportunities have changed as the582

spatial structure of Earth’s biomes evolved over time. As an evolutionary inference583

problem, the temporal dynamics of geographical opportunity is concerning: we typically584

infer ancestral biomes based on the phylogenetic distribution of biomes from extant species,585
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yet their ancestors were likely exposed to geographical opportunities significantly (perhaps586

even radically) different from the opportunities of their living descendants.587

Here, we have developed a Bayesian framework to model how phylogenetic lineages588

gain affinities with new biomes and disperse between regions in a manner reflecting the589

historical configuration of biomes through space and time. To do so, we modeled a590

time-stratified biome-region shift process using continuous-time Markov chains. The model591

is parameterized to allow biome shift and dispersal rates to depend on empirically592

structured paleobiome graphs, where each graph describes the availability and connectivity593

of biomes among regions within a given time stratum. We conducted a simple simulation594

experiment to show that we can identify which comparative datasets were shaped by595

paleobiome structure (wB > 0) using Bayes factors, provided the strength of the effect was596

at least moderately strong, even though wB is difficult to estimate precisely (Fig. 4). We597

then fitted our new model to estimate ancestral biomes and regions for Viburnum. In598

discussing our results, we focus on two principal aspects of our study: first, our empirical599

findings in Viburnum and how these may inform other studies seeking to estimate ancestral600

biomes or regions; and, second, an examination of the model’s assumptions and properties,601

and how the model’s realism may be improved in future work.602

Biome shifts in Viburnum603

Viburnum first diversified the Paleocene and Eocene (66–34Ma), a period when604

boreotropical forests dominated and connected the northern continents (Wolfe 1985;605

Graham 2011; Willis and McElwain 2014). Cold temperate forests that experienced long606

freezing periods were globally rare until after the Oligocene (<34 Ma). Although we607

inferred an East Asian origin regardless of what biome structure model was assumed,608

ancestral biome estimates under the three structure models differed in important ways. In609

the Paleobiome analysis, the ancestral biome of the crown node was probably warm610

temperate (p = 0.88) and possibly tropical (p = 0.09), and a cold temperate origin could611
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decisively be ruled out (p < 0.05; Fig. 5A). When we assumed that biome structure had612

always resembled today’s structure (Modern Biome), the crown node support changed,613

instead favoring a cold temperate (p = 0.67) or possibly a warm temperate (p = 0.31)614

origin (Fig. 5B). The Null Biome reconstruction also recovered a warm (p = 0.52) or cold615

(p = 0.45) temperate origin, despite the fact that the Null Biome inference assumed that616

all biomes are present in all regions at all times. Mismatches between lineage biome617

affinities and regionally available biomes were highest among pre-Oligocene lineages (>34618

Ma). Though cold temperate lineages remained in low proportions (∼5%) until the619

Oligocene under the Paleobiome analysis (Fig. 6A), the Modern/Null Biome analyses620

maintained high proportions of cold temperate lineages in East Asia (> 30%) and North621

America (7%) in the Eocene (Fig. 6B,C). Over 53% and 47% of pre-Oligocene branches622

bore mismatched biomes under the Modern and Null Biome analyses, respectively, but623

only 6% of those branch lengths were mismatched with biomes under the Paleobiome624

model (Figures 6D–F). Because of the global rarity of the cold temperate biome during the625

period of early Viburnum evolution, we favored the warm temperate or tropical origin of626

Viburnum under the Paleobiome analysis.627

Yet, despite stark differences in the Paleobiome and Modern Biome models,628

parameter estimates under both conditions found the spatial distribution of biomes to be629

the primary factor in explaining how viburnums came to live where they do today630

(wB > 0.92, i.e. compatible with the Very Strong condition used in the simulation631

experiment). Because the ability to estimate ancestral states or to fit evolutionary632

parameters decays as the evolutionary timescale deepens, we expect that both the633

Paleobiome and Modern Biome analyses primarily fit their parameters to phylogenetic634

patterns of variation pronounced at the shallowest timescales. All else being equal,635

however, older Viburnum lineages should disperse and biome shift in a manner that is636

similarly limited by geographical opportunities. The static geographical opportunities637

assumed under the Modern Biome structure induced stationary probabilities that project638
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today’s colder conditions back into the Late Cretaceous, while the dynamic Paleobiome639

structure favored hotter conditions unlike those at present (Figures 2 and 7). The lesson640

we take from this is that inferring the fundamental behavior of the process is not always641

sufficient for estimating ancestral states; inferring if and how that behavior responds to642

changing historical conditions is also necessary.643

We note that an East Asian origin in warm temperate or tropical forests is644

consistent with several other relevant lines of evidence developed in the study of Viburnum645

evolution, biogeography, and ecology. Previous efforts to reconstruct the ancestral biome of646

Viburnum have weakly favored warm temperate (Spriggs et al. 2015) or cold temperate647

(Lens et al. 2016) conditions; neither study definitively supported or ruled out a cold648

temperate origin. Similarly, Edwards et al. (2017) established a relationship between cold649

temperate conditions and the evolution of deciduousness in Viburnum, but could not650

resolve whether the MRCA was deciduous (cold-adapted) or evergreen (tropical or651

warm-adapted). Landis et al. (2019) estimated a warm temperate origin of Viburnum, with652

no support for a cold temperate origin, through a combined-evidence tip-dating analysis653

(Ronquist et al. 2012) that included fossil pollen coded with biome characters to inform the654

ancestral biome estimates. As a fossil-based estimate, the finding of a non-freezing origin of655

Viburnum cannot be accepted unconditionally; the estimate depends crucially upon the656

accuracy of biome state assignments to the fossil taxa, and also upon the spatial and657

temporal biases inherent to fossil deposition and recovery. But, importantly, the658

fossil-aware biome estimates of Landis et al. (2019) were obtained under the equivalent of659

our Null Biome model, while the fossil-naive estimates in the present study were obtained660

under the Paleobiome model. It is highly satisfying that both studies rule out a cold661

temperate ancestry for Viburnum, and that they do so by leveraging alternative lines of662

paleobiological evidence: the phylogenetic placement of fossils assigned to particular biomes663

in one case, and the inferred spatial distribution of biomes through time in the other.664

Examining only extant Viburnum species, the clade displays considerable variation665
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in both which biomes and which regions lineages occupy. Yet, each region does not contain666

equal proportions of lineages with affinities to the three biomes. There are several possible667

causes for this imbalance. In many cases, lineages may simply inhabit regions that lack668

certain biomes; it is not surprising that there are no extant tropical lineages in North669

America given that tropical forests have been marginal there since the Oligocene. In other670

cases, lineages may not have had long enough periods of time for certain biome shifts. For671

example, all Latin American lineages are adapted to warm temperate (cloud) forests, yet672

none of them have adapted to the adjacent tropical forest biome. Given the young age of673

the Latin American radiation, it is possible that there has not been enough time for them674

to shift into the accessible tropical forests. In this case we can imagine that biological675

factors (e.g., interactions with other species—competitors, herbivores, etc.—that have long676

occupied tropical forests) may have played a significant role in limiting this shift677

(Donoghue and Edwards 2014). In other cases, the imbalance may concern differential678

rates of speciation or extinction within biomes. For instance, there are relatively few679

tropical Viburnum species given the age and region of origin for the clade and given the680

age of Asian tropical biomes. If tropical viburnums experienced increased extinction rates681

(or decreased speciation rates) as they remained in an older biome, that effect would give682

rise to a pattern of scattered, singular, distantly related, and anciently diverging tropical683

lineages (“depauperons” of Donoghue and Sanderson 2015). This is precisely what we see684

in the case of V. clemensiae, V. amplificatum, and V. punctatum (Spriggs et al. 2015).685

From analyses under our simple Paleobiome model, it appears that temporal, geographical,686

and ecological influences on rates of character evolution and lineage diversification may all687

be important factors in explaining why Viburnum is distributed as it is across regions and688

biomes.689

Finally, although we question the general validity (often assumed) of “stepwise”690

series of events (e.g., ‘trait-first’ versus ‘climate-first’ in the evolution of cold tolerance;691

Edwards et al. 2015), we nevertheless explored how incorporating information on the past692
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distribution of biomes might influence the inference of biome-first versus region-first event693

series. Specifically, we asked whether Viburnum lineages tended to shift biomes first or694

disperse to a new region first when radiating through the mesic forests of Eurasia and the695

New World. Taking the mean proportions across time intervals, we found that when696

Viburnum lineages both disperse into new regions and shift into new biomes, region-first697

event series (28% of series) are more common than biome-first (19%) series under the698

Paleobiome model. Alone, this result is difficult to interpret, since the relative number and699

size of biome and region states will influence what constitutes a biome shift or dispersal700

event. Using the Modern analysis as a point of reference, we find a comparatively neutral701

relationship, with roughly equal proportions of biome-first (20%) and region-first (21%)702

series, while under the Null Biome analysis the Paleobiome relationship is inverted703

(biome-first, 22%; region-first, 19%). When all regions contain all biomes (Null Biome), it704

makes sense that the ratio of biome-first to region-first series is highest, and that it705

decreases when the distribution of biomes is not uniform across regions (Paleobiome and706

Modern Biome). In the case of Viburnum, it appears that several key regional shifts707

between Eastern Asia and North America occurred a relatively long time ago, when708

northern latitudes were still primarily covered by warm temperate forests (Fig. 8A). The709

biome shifts into cold temperate forests occurred later, as cooling climates spread across710

communities that were already assembled, which is compatible with the ‘lock-step’711

hypothesis of (Edwards et al. 2017). Consistent with this scenario, we found that712

region-first event series do not become the most common series type (over 35%) until the713

Late Oligocene under the Paleobiome model (Fig. 8D). Such region-first event series have714

also been inferred in several recent analyses, most notably by (Gagnon et al. 2019) who715

found that Caesalpinia legumes moved frequently among succulent biomes on different716

continents, and only later shifted into newly encountered biomes within each continent717

(Donoghue 2019). From our findings, we suspect that ignoring paleobiome structure may718

cause the number of region-first transition series to be underestimated. However, it must be719
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borne in our minds that our results may in part reflect the constraint built into our model720

that simultaneous shifts in biome and region are not allowed (discussed below). In any case,721

explicitly testing for the effect of paleobiome structure on event order will be important in722

evaluating patterns of supposed phylogenetic biome conservatism (Crisp et al. 2009).723

Model discussion724

Although our model is simple, it is designed with certain statistical features that725

would allow the model to be applied to diverse datasets beyond Viburnum, and to facilitate726

extensions of the model towards more sophisticated designs. First, we treat many elements727

in the evolutionary process as free parameters, whose values we estimate from the728

phylogenetic dataset in question. For example, the w parameters control which layers of729

the paleobiome graphical structure are most relevant to the evolutionary process, and the y730

parameters control how dominant biomes (or regions) must be to receive dispersal or biome731

shift events. Second, the Bayesian modeling framework we chose is ideal for managing732

complex and parameter-rich hierarchical models (Höhna et al. 2016), allowing for future733

models to explore the importance of other factors highlighted in the conceptual model of734

Donoghue and Edwards (2014) — geographical distance (Webb and Ree 2012), region size735

(Tagliacollo et al. 2015), biome size and shared perimeter (Cardillo et al. 2017), ecological736

distance (Meseguer et al. 2015), and the effect of biotic interactions on trait and range737

evolution (Quintero and Landis 2019) – by introducing new parameterizations for738

computing the time-stratified rate matrices, Q(m). Our Bayesian framework is also capable739

of sources of uncertainty in the paleobiome graphs, such as uncertainty in the age of the740

appearance of a biome within a region (Landis et al. 2018).741

In our application of the model, we defined only only three biomes and six regions,742

but the general framework translates to other biogeographical systems with different743

regions and biomes, provided one can construct an adequate time series of paleobiome744

graphs. Though our literature-based approach to paleobiome graph construction was745
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somewhat subjective, we found it to be the most integrative way to summarize varied746

global biome reconstructions, as most individual studies are purely qualitative (Wolfe 1985;747

Morley 2000; Jetz and Fine 2012 Willis and McElwain 2014; Graham 2011; Graham 2018;748

but see Kaplan et al. 2003) and based on disparate lines of paleoecological,749

paleoclimatological, and paleogeological evidence. We believe that our paleobiome graphs750

for the Northern Hemisphere are sufficiently accurate to show that spatial and temporal751

variation in the distribution of tropical, warm temperate, and cold temperate forest biomes752

in space and time can influence how species ranges and biome affinities evolve over time.753

Nonetheless, future studies should explore more quantitative approaches to defining754

paleobiome structures for use with the time-stratified regional biome shift model.755

Our simple model of regional biome shifts lacks several desired features. Perhaps756

most importantly, lineages in our model may only occupy a single region and a single757

biome at a time. On paper, it is straightforward to extend the concepts of this model to758

standard multi-character models, such as the Dispersal-Extinction-Cladogenesis model759

(Ree et al. 2005; Matzke 2014; Sukumaran et al. 2015). As a DEC model variant, lineages760

would be capable of gaining affinities with any biomes available within their range. For761

example, for M biomes and N regions, there are on the order of 2M+N combinations of762

presences and absences across biomes and regions, and on the order of 2MN combinations if763

region-specific biome occupancies are considered. Computationally, this creates a vast764

number of viable state combinations, many of which cannot be eliminated from the state765

space (Webb and Ree 2012). Such a large state space will hinder standard likelihood-based766

inference procedures for discrete biogeography (Ree and Sanmart́ın 2009), though recent767

methodological advances addressing this problem should prove useful (Landis et al. 2013;768

Quintero and Landis 2019).769

Geographical state-dependent diversification (GeoSSE) models may also be770

interfaced with our model. Incorporating the effect of biome availability on the extinction771

rate would, at a minimum, be a very important contribution towards explaining patterns of772
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extant diversity. For example, tropical biomes have declined in dominance since the773

Paleogene, and many ancient Viburnum lineages may have since gone extinct in the774

tropics, perhaps owing to biotic interactions (the “dying embers” hypothesis of Spriggs775

et al. 2015). In this sense, we expect that our model will overestimate how long a lineage776

may persist in a region that lacks the appropriate biome, since our model does not threaten777

ill-adapted species with higher extinction rates. Efforts to extend GeoSSE models in this778

manner will face similar, if not more severe, challenges to those encountered in the DEC779

framework, both in terms of computational limits and numbers of parameters (Beaulieu780

and O’Meara 2016; Caetano et al. 2018).781

If diversification rates vary conditionally on a lineage’s biome-region state, then so782

should the underlying divergence time estimates. At a minimum, one should jointly783

estimate divergence times and diversification dynamics to correctly propagate uncertainty784

in phylogenetic estimates through to ancestral state estimates (Höhna et al. 2019). Beyond785

that, paleogeographically structured models of biogeography have been shown to be useful786

for estimating divergence times (Landis 2017; Landis et al. 2018). Paleoecological models,787

such as our Paleobiome model, could be useful in some cases, perhaps for dating clades788

where some degree of phylogenetic niche conservatism can be safely assumed (Wiens and789

Donoghue 2004; Crisp et al. 2009; but see Donoghue and Edwards 2014 for potential790

pitfalls with this approach). For instance, Baldwin and Sanderson (1998) hypothesized that791

continental tarweeds (Madiinae, Asteraceae) radiated within the seasonally dry California792

Florisitic Province only after Miocene aridification created the province. Baldwin and793

Sanderson translated this relationship between biome age and biome affinity to date the794

maximum crown age of tarweeds, and thus date the maximum crown age of a notable795

radiation nested within the tarweeds, the Hawaiian silversword alliance. In the future,796

rather than calibrating the age of tarweeds by asserting a paleoecological hypothesis, it797

would be possible to use our biome shift model to measure the probability of the “dry798

radiation” scenario against competing scenarios, thereby dating the tarweeds (or other799
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clades) based on what ecological opportunities they made use of in different areas and at800

different times (Baldwin and Sanderson 1998; Landis 2017; Landis et al. 2018).801

Finally, although we have compared inferences of event series under several biome802

structure models, and have argued that paleobiome models can influence such inferences,803

we caution that event series themselves may not be accurate descriptors of some relevant804

evolutionary scenarios. For example, it is entirely possible that a shift into a new biome805

could occur during a transition from one region into another (e.g., adaptation to cold806

forests during range expansion through Beringia, or the long-distance dispersal of an807

organism already pre-adapted to occupy a novel biome). Such scenarios highlight that the808

model we have presented here is simplistic in some of its basic assumptions. We view it as809

a start in the right direction, and look forward to extensions that will allow us to test a810

variety of more nuanced hypotheses.811

Conclusion812

The potential for a lineage to adapt to new biomes depends in part on the813

geographical opportunities those lineages encountered in time and space. In the case of814

Viburnum, we have shown that differing assumptions about the past distribution of biomes815

can have a significant impact on ancestral biome estimates. And, when we integrate816

information about the changing distribution of biomes through time, we favor an origin of817

Viburnum in warm temperate or tropical forests, and confidently rule out an origin in cold818

temperate forests. The confluence of this line of evidence with our analyses based instead819

on fossil biome assignments (Landis et al. 2019) provides much greater confidence in a820

result that orients our entire understanding of the direction of evolution and ecological821

diversification in this clade.822

More generally, we hope that our analyses will motivate biogeographers who wish to823

estimate ancestral biomes to account for variation in the spatial distribution of biomes824

through time. While we have achieved some conceptual understanding of the interplay825
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between biome shifts in lineages and biome distributions over time, many theoretical and826

statistical problems must still be solved for us to fully appreciate the significance of827

changing biome availability in generating Earths biodiversity. In presenting our simple828

model, we hope to provoke further inquiry into how life diversified throughout the biomes829

of an ever-changing planet.830
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