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Abstract.—Intimate ecological interactions, such as those between parasites and their hosts, may persist over long time
spans, coupling the evolutionary histories of the lineages involved. Most methods that reconstruct the coevolutionary
history of such interactions make the simplifying assumption that parasites have a single host. Many methods also focus on
congruence between host and parasite phylogenies, using cospeciation as the null model. However, there is an increasing
body of evidence suggesting that the host ranges of parasites are more complex: that host ranges often include more than
one host and evolve via gains and losses of hosts rather than through cospeciation alone. Here, we develop a Bayesian
approach for inferring coevolutionary history based on a model accommodating these complexities. Specifically, a parasite
is assumed to have a host repertoire, which includes both potential hosts and one or more actual hosts. Over time, potential
hosts can be added or lost, and potential hosts can develop into actual hosts or vice versa. Thus, host colonization is modeled
as a two-step process that may potentially be influenced by host relatedness. We first explore the statistical behavior of our
model by simulating evolution of host–parasite interactions under a range of parameter values. We then use our approach,
implemented in the program RevBayes, to infer the coevolutionary history between 34 Nymphalini butterfly species and
25 angiosperm families. Our analysis suggests that host relatedness among angiosperm families influences how easily
Nymphalini lineages gain new hosts. [Ancestral hosts; coevolution; herbivorous insects; probabilistic modeling.]

Extant ecological interactions, such as those between
parasites and hosts, are often the result of a long history
of coevolution between the involved lineages (Elton 1946;
Klassen 1992). Specialization is predominant among
parasites, including parasitic herbivorous insects, which
complete all their larval development on an individual
host (Thompson 1994; Forister et al. 2015). But host–
parasite interactions are not static, they continuously
evolve over time via gains and losses of hosts (Janz
and Nylin 2008; Nylin et al. 2018). The colonization
of new hosts and loss of old hosts not only shape
the evolutionary trajectories of the interacting lineages
but can also have large effects at ecological timescales
(Nosil 2002; Calatayud et al. 2016). These effects
are evident, for example, with emerging infectious
diseases and zoonotic diseases (Acha and Szyfres
2003), which involve the colonization of new hosts
within and among groups of domesticated species
(Subbarao et al. 1998), wildlife (Fisher et al. 2009), and
humans (Hahn et al. 2000). Unraveling the processes
that underlie changes in species interactions is thus
key to understanding evolutionary and ecological
phenomena at various timescales, such as the emergence
of infectious diseases, community assembly, and parasite
diversification (Hoberg and Brooks 2015).

Many methods developed to study historical
associations focus on congruence between host and
parasite phylogenies (Brooks 1979; Huelsenbeck et al.
1997; de Vienne et al. 2013). Such methods largely fall
into two main classes of cophylogenetic approaches: 1)
topology- and distance-based methods, which estimate
the congruence between two phylogenies (Legendre

et al. 2002) and 2) event-based methods, which map
the parasite phylogeny onto the host phylogeny
using evolutionary events (Ronquist 2003). Typically,
cospeciation is the null hypothesis in these methods,
where host shifts are invoked only to explain deviations
from cospeciation (de Vienne et al. 2013). Moreover,
most of these methods do not allow ancestral parasites
to be associated with more than one host lineage, thus
failing to account for a potentially important driver of
parasite diversification (Janz and Nylin 2008).

An alternative approach to studying coevolving
host–parasite interactions is to perform ancestral state
reconstructions of individual host taxa onto the parasite
phylogeny and combine the ancestral host states a
posteriori into inferred host ranges (e.g., Nylin et al.,
2014). Even though this approach allows ancestral
parasites to have multiple hosts, it assumes that the
interactions between the parasite and each host evolve
independently. This has a number of serious drawbacks.
For instance, ancestral parasites may be inferred to have
an unrealistically high number of hosts, or no host
at all. Furthermore, the more narrowly circumscribed
the host taxa are, the more likely it is that ancestral
parasite lineages are reconstructed as having no hosts.
In addition, the independence assumption causes the
phylogenetic relationships among hosts to be ignored,
meaning that the model assigns equal rates to all
colonizations of new hosts regardless of how closely
related the new host is to the current hosts being used
by the parasite.

A desirable model of host usage should therefore
allow parasites to have multiple hosts, while also
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allowing for among-host (or context-dependent) effects
to influence ancestral host use estimates and gain and
loss rates in whatever manner explains the biological
data best. One possible solution is to restate the problem
of host–parasite coevolution in terms of historical
biogeography. For instance, the Dispersal-Extirpation-
Cladogenesis model of Ree et al. (2005) allows species
ranges to stochastically evolve as a set of discrete areas
over time through area gain events (dispersal), area
loss events (extirpation), and cladogenetic events (range
inheritance patterns that reflect speciational models).
Although these methods are designed for biogeographic
inference, a similar approach is clearly suitable for
more realistic modeling of host–parasite coevolution
dynamics, where colonization and loss of hosts (instead
of discrete areas) is modeled as a continuous-time
Markov process (e.g., Hardy, 2017). In biogeography, the
colonization of a new area or the disappearance from a
previously occupied area is modeled as a binary trait: the
species is either present or absent in the area. While this
binary view might be adequate in biogeography, it may
be too simplistic for use in the coevolution between hosts
and parasites. For instance, it is known that butterflies
can utilize a range of plants that they do not regularly
feed on in the wild, and it has been suggested that these
potential hosts have played an important role in the
evolution of host use in butterflies, by increasing the
variability in host use through time and across clades
(Janz et al. 2016; Braga et al. 2018). This hypothesis
can only be directly tested, however, if we explicitly
model the evolution of host use as a two-step process,
which cannot be done with the binary methods that
are used today to study host–parasite coevolution or
biogeography.

Here, we propose a model where a parasite is assumed
to have a host repertoire, defined as the set of all potential
and actual hosts for that parasite. In this model, the
colonization of a new host involves two steps: first, the
parasite gains the ability to use the new host (it becomes
a potential host), and then starts actually using it in
nature (it becomes an actual host). These two steps can
be interpreted as the inclusion of the new host into
the fundamental host repertoire of the parasite, and
then into the realized host repertoire of the parasite—
analogous to the concepts of fundamental and realized
niches (Nylin et al. 2018; Larose et al. 2019) and to the
compatibility and encounter filters of Combes (2001).
Similarly, the complete loss of a host from a parasite’s
realized repertoire involves two steps. First, it changes
from an actual to a potential host, and then it is lost
completely from the host repertoire. For example, if
the geographic range of a host contracted to become
allopatric with respect to a parasite’s geographic range,
the host would remain as part of the fundamental
repertoire until the parasite completely lost the ability to
use the host, in which case the host would be lost from
the repertoire. Even when in sympatry, the evolution of
a new defense mechanism by the host may prevent the
parasite from using that host. However, since host use

is a complex and multidimensional trait, it is unlikely
that a parasite loses all the machinery necessary to use
a host in one single event, and it may well retain some
ability to survive on the host. Thus, a complete gain or
loss of a host lineage requires at least two events, and
three host–parasite interaction states are necessary for
such a two-step model: the host is used (actual host), the
parasite has some ability to use the host but does not use
it in nature (potential host), and the parasite cannot use
the host (nonhost).

In this article, we develop a Bayesian approach to
coevolutionary inference based on such a model of
host repertoire evolution, inspired by the previous
work on similar biogeographic inference problems by
Landis et al. (2013). The basic two-state biogeographic
model, when applied to coevolution, accommodates
both multiple ancestral hosts and changes in host
configurations over time that correspond to evolutionary
changes in host usage. We extend this model to also
include a two-step host colonization process, such that
the fundamental host repertoire can persist over time
and affect the evolution of the realized repertoire. We
have implemented the model in RevBayes (Höhna et al.
2016), allowing us to simulate data as well as perform
Bayesian Markov chain Monte Carlo (MCMC) inference
under the model. This Bayesian framework allows one
to estimate the joint distribution of host gain and loss
rates, the effect (if any) of phylogenetic distances among
hosts upon host gain rates, and the historical sequences
of evolving host repertoires among the parasites. Using
simulations, we explore the statistical behavior of our
approach and demonstrate its empirical application with
an analysis of the coevolution between Nymphalini
butterflies and their angiosperm hosts.

METHODS

Model Description
We are interested in modeling the evolution of

ecological interactions between M extant parasite taxa
and N host taxa, where each parasite uses one or
more hosts. Rooted and time-calibrated phylogenetic
trees describe the evolutionary relationships among the
M parasite taxa and among the N host taxa. In this
study, the trees are considered to be known without
error. In principle, it would be straightforward for the
model to accommodate phylogenetic uncertainty in the
host or parasite trees but MCMC inference may prove
challenging under such conditions.

Each parasite taxon has a host repertoire, which is
represented by a vector of length N that contains the
information about which hosts the given parasite uses.
The interaction between the mth parasite and the nth
host is denoted xm,n. At any given time, each host taxon
can assume one of three states with respect to a parasite
lineage: xm,n is equal to 0 (nonhost), 1 (potential host), or 2
(actual host). Criteria for how to code nonhost, potential
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host, and actual host states will depend on the host–
parasite system under study; below, we provide criteria
for our Nymphalini data set that may act as guidelines.
We allow all host repertoires in which the parasite has
at least one actual host. Thus, the state space, S, includes
3N −2N host repertoires for N hosts.

Here, we define the transition from state 0 to state
1 as the gain of the ability to use the host, and the
transition from state 1 to state 2 as the time when the
parasite actually starts to use the host in nature. If we
assume that gains and losses of hosts occur according
to a continuous-time Markov chain, the probability of
a given coevolutionary history between a parasite clade
and their hosts can be easily calculated (Ree and Smith
2008). This calculation is based on a matrix, Q, containing
the instantaneous rates of change between all pairs of
host repertoires, and thus describing the Markov chain.
Based on the Q matrix, it is possible to calculate the
transition probability of the observed host repertoires
at the tips of the parasite tree by marginalizing over
the infinite number of histories that could produce
the observed host repertoires. Unfortunately, computing
these transition probabilities becomes intractable as the
number of host repertoire configurations, S, grows large.
Modeling host repertoire evolution for host repertoire
size N =7 requires an S×S rate matrix defined for S=
37 −27 =2059, causing Q to be too large for efficient
inference. In order to handle large host repertoires,
we numerically integrate over possible histories along
the parasite tree using data augmentation and MCMC
rather than analytically computing the probabilities
using matrix exponentiation. This data augmentation
approach has been used to model sequence evolution
for protein-coding genes (Robinson 2003) and historical
biogeography (Landis et al. 2013; Quintero and Landis
2020), suggesting the framework may be useful to model
host–parasite interactions as well. In this study, we
assume that both daughter lineages identically inherit
their host repertoires from their immediate ancestor at
the time of cladogenesis. It is possible to extend the
model to consider more complex speciation scenarios,
such as daughter lineages dividing the host repertoire
between them, but we leave the exploration of such
model variants for future studies.

We define a model where the gain of a host (both
0 → 1 and 1 → 2) depends on the phylogenetic
distance between the available hosts and those currently
used by a lineage. Figure 1 schematically illustrates the
evolutionary dynamics of the model using M=4 parasite
species and N =5 host species, while assuming that
host gain rates are independent (Fig. 1a,c) or dependent
(Fig. 1b,d) of phylogenetic distances among hosts. To
formalize these dynamics, let q(a)

y,z be the rate of change
from host repertoire y to repertoire z by changing the
state of host a. Also, let �ij be the rate at which an
individual host changes from state i to state j, and
�(y,a,�) be a phylogenetic-distance rate modifier. In
practice, we constrain the host change rates such that

0≤�ij ≤1, and estimate the parameter, �, which we use
to rescale all rates in �. We refer to � as the maximum
rate (or rate, for short) of host repertoire evolution, since
0≤��ij ≤�. The phylogenetic-distance rate modifier
function, �, further rescales the rates of host gain to
allow new hosts that are closely related to the parasite’s
current hosts to be colonized at higher rates than
distantly related hosts. Poulin (2010) reported a negative
exponential relationship between host relatedness and
parasite faunas they share, emulating the relationship
between dispersal rates and the geographical distances
among islands (MacArthur and Wilson 1967) by treating
hosts as islands and host ancestry as space (Janzen 1968).
Taking this as inspiration, we defined the phylogenetic-
distance rate modifier function to impose a negative
exponential relationship between the host gain rates and
the phylogenetic distances of newly acquired hosts. We
define the instantaneous rate of change as

q(a)
y,z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��10, if potential host loss (ya =1 and za =0)
��01�1 if potential host gain (ya =0 and za =1)
(y,a,�)
��21, if actual host loss (ya =2 and za =1)
��12�2 if actual host gain (ya =1 and za =2)
(y,a,�)
0, if direct transition between states 0 and

2(|ya −za|>1)
0, if y and z differ at more than one host
0 if y does not contain at least one actual

host

and the phylogenetic-distance rate modifier function as

�(y,a,�)=e−�d/d, (0.1)

where � controls the effect of d, the average pairwise
phylogenetic distance between the new host, a, and the
hosts currently occupied in y; and d is the average
phylogenetic distance between all pairs of hosts. Pairwise
phylogenetic distance is defined as the sum of branch
lengths separating two leaf nodes. The difference
between �1 and �2 is that for the first function, pairwise
distances are calculated between the new host and all
potential and actual hosts, while in the second only
actual hosts are included. This allows for a model
formulation where the effect of host distances on �01
and on �12 are independent, while still allowing a
formulation where they are equal. Regardless of its
formulation, the effect of host distances depends on how
it is scaled by �. If �>0, the gain rate of phylogenetically
close hosts is higher than distant hosts. If �=0, the gain
rate of host a is equal to the unmodified gain rate, �01 or
�12.

The process of host repertoire evolution with different
combinations of � and � will produce data sets
with different levels of phylogenetic conservatism.
When � is low, the host repertoire evolves slowly,

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/69/6/1149/5810100 by guest on 27 April 2021



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:35 15/10/2020 Sysbio-OP-SYSB200020.tex] Page: 1152 1149–1162

1152 SYSTEMATIC BIOLOGY VOL. 69

a) b)

c) d)

FIGURE 1. Host repertoire evolution within a hypothetical parasite clade and resulting host-parasite interactions. Two examples of
coevolutionary histories between four parasites and five hosts are shown to illustrate how the model works. Host repertoires evolve by gains (0
→ 1 and 1 → 2, blue arrows) and losses (1 → 0 and 2 → 1, red arrows). Coevolutionary histories in (a) and (b) produce the interactions in (c) and
(d), respectively. In (c) and (d), each column represents one host, and each row represents the host repertoire of one parasite. High phylogenetic
conservatism is produced when the rate of repertoire evolution, �, is low and the effect of the phylogenetic distance between hosts, �, is high.
Conversely, low phylogenetic conservatism is produced when � is high and � is low.

resulting in similar repertoires between closely related
butterflies, that is, high phylogenetic conservatism. We
use phylogenetic distances between hosts as a proxy for
differences in traits related to host use. Thus, �=0 is
equivalent to fast trait evolution, where phylogenetic
distance is not a good proxy for trait distance. On
the other hand, when � is high, phylogenetic and
trait distances match (high phylogenetic conservatism),

hence closely related hosts are more similar then
distantly related hosts.

We fit this model using the Bayesian data
augmentation strategy described in Landis et al. (2013).
The method estimates the joint posterior probability
of model parameters, �= (�,�,�), and data-augmented
evolutionary histories, Xaug, conditional on the observed
host repertoire data, Xobs, the rooted time-calibrated
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tree for the parasites, �p, and rooted time-calibrated tree
for the hosts, �h, using MCMC. To sample values from
the posterior, P(Xaug,� |Xobs,�p,�h), new parameter
values for �, �, and � are proposed using standard
Metropolis–Hastings proposals for updating simple
parameters (Hastings 1970). Analogously, our MCMC
stochastically proposes and/or accepts new augmented
host repertoire histories using the Metropolis–Hastings
algorithm. Augmented histories are proposed using
two types of MCMC moves: branch-specific moves
and node-and-branch moves. Branch-specific moves
propose a new augmented history by sampling a
branch from the phylogeny uniformly at random, then
proposing new histories for a subset of host characters
using the rejection sampling method of Nielsen (2002)
under the assumption that all host characters evolved
under mutual independence (�=0); this assumption
allows us to rapidly propose new augmented histories.
Although augmented histories are proposed assuming
host characters evolve independently, we compute the
acceptance probability for the branch-specific move
by considering the full-featured model probability
that allows for nonindependent rates of character
change when calculating the Metropolis–Hastings
ratio. Thus, the augmented histories are sampled in
proportion to their posterior probabilities under the full
model. Node-and-branch moves involve sampling new
host repertoire states for a node sampled uniformly
at random within the parasite tree, along with the
three branches incident to the node. Together, the
branch-specific moves, the node-and-branch moves,
and the parameter moves allow MCMC to estimate the
posterior probability of combinations of host repertoire
histories and evolutionary parameters. Further details
are provided in Landis et al. (2013) and Quintero and
Landis (2020).

Model Selection
When �=0, the phylogenetic-distance dependent

model, MD becomes a mutual-independence model, M0,
where the interaction between the parasite and each
host evolves independently. These models are therefore
nested (M0 ⊆MD), and we can compute Bayes factors for
model MD over model M0 using the Savage–Dickey ratio
(Verdinelli and Wasserman 1995; Suchard et al. 2001;
Marin et al. 2010), defined as

BD,0 = P(�=0 |MD)
P(�=0 |xobs,MD)

, (0.2)

where PD(�=0 |MD) is the prior probability and P(�=
0 |xobs,MD) is the posterior probability, both defined in
terms of the phylogenetic-distance dependent model,
MD, at the restriction point �=0, where MD and M0
are equivalent. In practice, we are careful to assign �
a prior that is independent of other model parameters
to satisfy the conditions of the “naïve” Savage–Dickey
ratio (Heck 2019). While we could directly compute
the prior probability of �=0, we approximated the

posterior probability of �=0 using the kernel density
estimator from the R package kdensity (Chen 2000) with
a gamma function, which only takes positive values, with
a bandwidth of 0.02. To interpret if and how Bayes factors
favored the phylogenetic-distance dependent model,
MD, we followed the guidelines of Jeffreys (1961): model
M0 is favored for Bayes factors with values less than 1,
insubstantial support is awarded to model MD for values
between 1 and 3, substantial support for values between
3 and 10, strong support for values between 10 and 30,
very strong support for values between 30 and 100, and
decisive support for values greater than 100.

Data Analysis
Simulation study We simulated 50 data sets for each of
nine combinations of values for the rate of host repertoire
evolution, � (0.1, 0.5, and 1.0), and values of � (0, 1,
and 4). These parameter combinations produce data sets
with varying degrees of phylogenetic conservatism for
both parasites and hosts: when � is low, closely related
butterflies have similar repertoires; and when � is high,
closely related hosts are used by the butterflies (Fig. 2).
Each data set contained 34 insects and 25 hosts and was
produced by simulating host repertoire evolution in the
parasite tree used in the empirical study (see below).
Host gain and loss rates were chosen to resemble the rates
inferred from the empirical analysis. This simulation was
designed to assess our statistical power to detect the
effect of phylogenetic distance among hosts upon host
gain rates given the size of our empirical data set and
the type of variation we expected it to contain.

We ran independent MCMC analyses for each set of
50 data sets, under the phylogenetic-distance dependent
model. We then quantified how well the posterior
probabilities of coevolutionary histories corresponded
to the true history known from each simulation.
Specifically, we first computed the posterior probability
of interaction between each host and each internal node
in the butterfly tree, for states 1 and 2 separately. Then,
we compared the true coevolutionary history of each
simulation to the corresponding posterior distribution
of the sampled coevolutionary histories (observed
probability). In order to estimate how much of the
observed accuracy in ancestral state estimation should
be expected by chance, we calculated, for each simulated
coevolutionary history, the mean posterior probability
for each true state across the 50 replicates with the
same parameter combination (probability expected by
chance). This shows what is the expected posterior
probability for each true ancestral state when the data
set used for inference has similar properties to the true
data set, but not the same tip states.

Empirical study In order to validate our method,
we compiled data from the literature for butterflies
from the tribe Nymphalini (Nymphalidae) and their
host plants (see Supplementary Material available
on Dryad at https://doi.org/10.5061/dryad.x95x69pdw
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FIGURE 2. Simulated data sets for nine parameter combinations.
Interactions between Nymphalini butterflies and their host plants for
one of 50 simulations with each parameter combination. In each of the
nine data sets, each column represents one host in the repertoire and
each row shows the host repertoire of one butterfly species. Rows and
columns are ordered by butterfly and plant phylogeny, respectively.
When phylogenetic conservatism in host–parasite interactions is low
for both hosts and parasites, the interactions are more randomly spread
(matrix at bottom-left corner). As phylogenetic conservatism among
parasites increases, host repertoires (rows) become more similar (upper
matrices). When there is phylogenetic conservatism among hosts, host
repertoires include more closely related hosts (neighboring columns;
matrices to the right).

for reference list). We chose this butterfly clade because
we expect that a large fraction of the real potential hosts
are known, as there have been systematic experimental
studies of larval feeding ability. The data set included
34 butterflies species and plants from 16 angiosperm
families (Supplementary Figs. S1 and S2 available on
Dryad). For each butterfly species, host plants commonly
used in nature were coded as “actual hosts” and plants
never used were coded as “nonhosts.” Plants that are
not commonly used in nature, but for which there is
strong evidence (field observation or experiment) that
the larvae can feed upon them, were coded as “potential
hosts.”

Because we lack the information on potential hosts for
most host–parasite systems (i.e., hosts are usually only
classified as hosts or nonhosts), we tested whether our
model is able to recover the same parameter estimates
and coevolutionary histories when all the potential hosts
are recoded as nonhosts. For that, we ran the same
analysis as for the full data set, but replaced all the 1s

from the empirical data set with 0s. Then, we compared
the posterior probabilities inferred from the full data
set and the recoded data set. To assess the similarities
between the coevolutionary histories inferred using the
different data sets, we calculated summary statistics for
the absolute difference in probability of each interaction
between hosts and internal nodes in the butterfly
tree.

For both the simulation and empirical studies, we
used the phylogenetic relationships between butterfly
species in the Nymphalini tribe as proposed by Chazot
et al. (2020, Supplementary Fig. S3 available on Dryad)
and the phylogenetic relationships between angiosperm
families proposed by Magallón et al. (2015). Although
our framework allows the inclusion of a large number of
hosts in the same analysis, computational time increases
significantly with the size of the host repertoire. We
therefore chose to include 25 plant families, which
allows the inclusion of all the 16 host lineages used
by any of the butterflies. For biologists interested in
applying our method to their data sets, we found our
data set of 34 parasite species and 25 host lineages took
approximately 1 week to analyze, while a larger data set
comprised of 66 parasite species and 50 host lineages
took about 3 weeks to complete the same number of
generations.

To ensure the inclusion of all plant lineages that might
have been used as hosts in the past, we pruned the
angiosperm phylogenetic tree so that all 16 families in
the data set were included, and the remaining branches
were collapsed to more ancestral nodes until only 25 tips
were left. We then pruned all the branches leading up
to the tips to the time of origin of the butterfly clade
(approx. 22 Ma), and this pruned tree was then used
to calculate phylogenetic distances between hosts. To
simplify the analysis, we hold the phylogenetic distances
between plant families constant through geological
time, even though the distances would be expected
to increase as evolution proceeds towards the recent.
After preliminary analyses, however, we found that
time-calibrated distances between host lineages (i.e.,
phylogenetic distance calculated as described above)
have a weak effect on host gains. On the other hand,
“cladogenetic” distances (calculated as the phylogenetic
distance between host lineages after setting each branch
length equal to 1) had a much stronger effect. Thus,
we present the results using cladogenetic distances in
the main paper and results using the untransformed
“anagenetic” distances in the Supplementary Figs. S4–S6
available on Dryad).

We summarized inferred coevolutionary histories in
two ways. First, we calculated the posterior probability
for fundamental and realized host repertoires at internal
nodes of the Nymphalini phylogeny based on the
frequency with which states 1 and 2 were sampled for
each host during MCMC. Second, in order to facilitate
the visualization of ancestral state reconstructions, we
reduced the dimensionality of the host repertoire by
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a) b)

c) d)

FIGURE 3. Posterior probabilities of parameters in the simulation study. a) and b) Faceted by true parameter values of � and �, respectively.
Fifty data sets were simulated for each combination of �∈{0,1,4} and �∈{0.1,0.5,1}, while �01 =0.05, �10 =0.5, �12 =0.25, and �21 =0.2 were
held constant. Boxplots show the distribution of mean estimated parameter values for each of the 50 data sets for each parameter combination.
Medians are represented by thick black lines, boxes are delimited by first and third quartiles, black vertical lines extend at most 1.5 × IQR (i.e.,
the interquartile range), and dots show outliers. Red horizontal lines mark the true parameter value used in the simulations.

assigning hosts to modules based on extant butterfly–
plant interactions (Supplementary Fig. S2 available on
Dryad). Modules are groups of plants and butterflies
that interact more with each other than with other taxa,
thus host plants are assigned to the same module when
they are used by the same butterflies. To identify the
modules, we used a simulated annealing algorithm that
maximizes the index of modularity. Specifically, we used
Newman and Girvan’s metric (Newman and Girvan
2004) modified for bipartite networks (Barber 2007) as
implemented in the software MODULAR (Marquitti
et al. 2014).

Software configuration All analyses were performed
in RevBayes (Höhna et al. 2016). For the simulated
data, we ran two independent MCMC analyses for 105

cycles, sampling parameters and node histories every 50
cycles, and discarding the first 104 cycles as burnin. For
the empirical data, we ran three independent MCMC
analyses, each set to run for 5×105 cycles, sampling
every 50 cycles, and discarding the first 105 cycles as
burnin. To verify that MCMC analyses converged to
the same posterior distribution, we applied the Gelman
diagnostic (Gelman and Rubin 1992) provided through
the R package coda (Plummer et al. 2006), and used a
threshold of 1.1. For both simulated and empirical data
sets, we used the following priors: �∼Exponential(1),
�∼Exponential(10), and �∼Dirichlet(1,1,1,1). A
RevBayes tutorial for the empirical analysis is available
at https://revbayes.github.io/tutorials/host_rep/host_
rep.html. Analysis scripts and data files are available in
the Supplementary material available on Dryad.
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FIGURE 4. Distribution of Bayes factors for the simulation study.
Each column corresponds to the strength of support per 2×50 MCMC
analyses.

RESULTS

Simulation Study
Posterior distributions of parameter values for the

9×100 MCMC analyses are shown in Figure 3. Overall,
the model was able to accurately recover the true
simulation parameters. When estimating �, accuracy
was lowest when �=0, possibly because the density
of the prior distribution of � is highest close to
zero. Estimating �=4 was most difficult when �
was small, that is, when � produces the smallest
host gain rate multipliers. Also, accuracy was lower
when estimating the highest rate of host repertoire
evolution, �=1, which is likely due to higher rates of
evolution generating more uncertainty in ancestral state
estimates.

We performed model selection based on Bayes factors
(Fig. 4). Considering that the prior distribution is �∼
Exp(1), a high density for �=0 under MD is necessary
to result in a Bayes factor <1 and thus selection of M0.
For simulations with �=0, the correct model, M0, was
selected in the majority of simulations. When �=1, Bayes
factors correctly selected MD in many cases, but strong
support for MD was only achieved in simulations with
high �. Finally, the large majority of simulations with
�=4 supported MD.

Figure 5 shows that accuracy in ancestral state
estimation was affected by both � and �, increasing
with phylogenetic conservatism on both the butterfly
(low �) and the plant phylogenies (high �). Overall,
posterior probability was higher on the estimation of
actual hosts (State 2) than potential hosts (State 1),
but for both, the observed accuracy was higher than
the accuracy expected by chance across all parameter
combinations.

Empirical Study
The estimated mean rate of host repertoire evolution

for Nymphalini was �=0.86, the mean phylogenetic-
distance parameter value was �=1.31, and the mean
gain/loss rates were �01 =0.014, �10 =0.71, �12 =0.13,
and �21 =0.14 (Fig. 6, blue). Our method recovered
similar parameter estimates for the empirical data set
when omitting the intermediate state at the tips—that is,
recoding all potential hosts (State 1) as nonhosts (State
0): �=1.25, �=1.32, �01 =0.007, �10 =0.73, �12 =0.17,
and �21 =0.096 (Fig. 6, orange). Although the � and �
estimates differ somewhat between the analyses, both
analyses produced similar mean total numbers of events
per unit time (1.35 and 1.17 events/Myr for the observed
and recoded data sets, respectively). We note, however,
that the rates into State 1 were underestimated, and the
rates out of State 1 were overestimated when 1s were
removed from the data set. For both the full data set
and the recoded data set, Bayes factors (BF) selected
the dependence model, MD (BF > 100). For comparison,
when using the time-calibrated tree for host plants, the
independence model, M0 was selected (BF < 1) for both
full and recoded data sets.

Finally, we reconstructed the fundamental and
realized host repertoires at internal nodes of the
Nymphalini phylogeny based on the sampled histories
during MCMC. Coevolutionary histories inferred using
the full and recoded data sets were very similar,
as well as when using the branch-length-transformed
(cladogenetic) host phylogeny and when using the
time-calibrated (anagenetic) host phylogeny to measure
phylogenetic distance. Thus, we only display the
ancestral states inferred from the three-state data set and
the cladogenetic host phylogeny (all branch lengths = 1)
in the results (Fig. 7). Supplementary Figure S5 available
on Dryad shows the posterior distribution of ancestral
states for all the four model variants investigated in
this study. To facilitate visualization of the ancestral
state reconstruction, we grouped the 16 parasitized host
families into five modules, as identified by the simulated
annealing algorithm (Supplementary Fig. S2 available
on Dryad). Eleven families (representing three modules)
were inferred to be used by ancestral Nymphalini species
with probability > 0.9.

We found strong support for the interaction between
the ancestor of all Nymphalini butterflies and Urticaceae
hosts. All other host families have been colonized in the
last 10 Myr, after the divergence of the two largest clades
within Nymphalini, Vanessa, and Nymphalis + Polygonia.
Most species within Vanessa, both extant and ancestral,
are specialists on Urticaceae. Vanessa virginiensis and
Vanessa cardui are the only extant species that use more
than two host families, and these hosts have likely been
colonized by their most recent common ancestor (node
38 in Fig. 8). On the other hand, the variation in host
use in the Nymphalis + Polygonia clade seems to be the
result of host colonizations by multiple species along the
diversification of the clade. For example, in Figure 8 we
can see the colonization of new hosts by the ancestor of
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FIGURE 5. Posterior probability of true ancestral states in the simulation study. Each boxplot shows the distribution of average posterior
probability for the true state across all interactions between hosts and internal nodes in the butterfly tree for each batch of 50 simulated data
sets. Each panel shows the observed and expected probabilities for States 1 and 2, for each combination of � and �.

FIGURE 6. Marginal posterior densities for parameters in the Nymphalini-Angiosperms study for both the full data set (three states at tips)
and the data set omitting the intermediate state (two states at tips). Gray lines correspond to the priors �∼Exponential(1), �∼Exponential(10),
and �∼Dirichlet(1,1,1,1), where elements of � follow the marginal distribution, �i,j ∼Beta(1,3).
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FIGURE 7. Evolution of butterfly–plant interactions through time. Ancestral state estimates (left) of host repertoire across the Nymphalini
phylogeny are shown for interactions with more than 90% posterior probability. The x-axis under shows time before present in millions of
years. Extant species interactions (right) between Nymphalini and their host plants are presented as a raster, where each square represents one
interaction between a butterfly species and a host family. Colors represent different modules, that is, groups of plants that are often hosts to
the same butterflies at present time. Square size was used to differentiate between actual and potential hosts. Arrows indicate nodes shown in
Figure 8.

Polygonia c-album and Polygonia faunus (node 53) as well
as strong specialization on a new host by Kaniska canace
and a less pronounced shift in host preference by its sister
species (node 51).

DISCUSSION

The method we develop here to infer the evolutionary
history of ecological interactions has many advantages
over previous approaches. First, it is based on stochastic
models and on established principles of statistical
inference, which means that it provides a robust
framework for characterizing the evolutionary processes
that shape ecological interaction networks and for
selecting among alternative coevolutionary models.
Second, our model introduces the concept of a host
repertoire as the evolving trait, which we think is an
important step forward. Besides accounting for the

possibility of parasites having more than one host over
time scales of macroevolutionary significance, we can
now directly infer the influence of host relatedness on
the process of gaining new hosts. Third, the stochastic
model of host–parasite coevolution that we introduce
here is, to our knowledge, the first that explicitly accounts
for evolution of the fundamental host repertoire. By
recognizing the fact that a parasite may have potential
hosts in addition to its actual hosts, and that the
set of potential hosts may persist over time, the
dynamic of the model changes. What would otherwise
have appeared as remarkable repeated patterns of
colonization of the same host lineages can now be
explained as the effect of frequent transitions between
potential and actual hosts in an otherwise conserved host
repertoire.

Our model can readily be extended in many
interesting ways. The version we present here accounts
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FIGURE 8. Host repertoires at selected nodes of the Nymphalini tree (arrows in Fig. 7). Numbers indicate the node index (compatible with
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other repertoires, the posterior probabilities for hosts being in the fundamental (States 1 or 2) and the realized (State 2) host repertoire are shown.
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for the effect of host phylogeny by allowing the rate of
host gain to depend on host relatedness. For simplicity,
we assumed that the number of available hosts and
host relatedness remain constant over geological time.
This would be appropriate for a group of parasites
that radiated after the relevant host lineages had been
formed, which is arguably the case for the empirical
example we chose. However, it should be relatively
straightforward to extend our framework to account
for more complex dependencies on host phylogeny. For
instance, the host configurations could be modeled as
changing over time, reflecting host cladogenesis.

Another interesting direction for future research
would be to modify the particular ways in which hosts
and parasites coevolve. We note, for example, that
Figure 7 shows that host repertoires of Vanessa species
overlap very little with the host repertoires of Nymphalis
+ Polygonia species, but it is not immediately clear what
drives this pattern. One could design a model that
allows the rates of host gain and loss to be influenced
by evolving host traits—like secondary metabolites,
growth form, or phenology, to mention a few examples
relevant for insect–host plant interactions—in addition
to relatedness among hosts. Or, one might extend the
model to allow closely related parasite lineages to
competitively exclude one another from host usage,
similar to how competing lineages might exclude one
another from geographical regions (Quintero and Landis
2020). Finally, one might introduce a biogeographical
component to the coevolutionary process, requiring
parasites to be in sympatry with their actual hosts, while
allowing parasites to be in sympatry or allopatry with
their potential hosts. Statistically comparing such model

variants will help illuminate drivers of host–parasite
coevolution.

A potential concern with our approach is that already
the basic version of the model is fairly parameter-rich.
Given the type and amount of data that we can likely
collect on host–parasite interaction, is there enough
statistical power to select among the models of interest?
And is it possible to infer the model parameters of
interest with a reasonable degree of accuracy?

Overall, our results are encouraging in this respect.
The simulations indicate that it is possible to infer the
true parameter values of the basic model regardless of
the level of phylogenetic conservatism in both parasites
and hosts (Fig. 3). We were also able to distinguish
between models with or without host relatedness effects
using Bayes factors (Fig. 4). Further studies will have to
show to what extent the sensitivity of the model test
can be increased by selecting appropriate priors and
improving the sampling of parameter space close to the
boundary condition satisfying the restricted model. One
option is to relax the assumption that � is nonnegative,
which would simplify the sampling of values close to
�=0. It will also be important to explore how data
set sizes and tree shapes, for both hosts and parasites,
influence our ability to distinguish the models when the
effect of host phylogeny is small.

Importantly, the empirical analysis indicates that the
method is able to model the evolution of fundamental
and realized host repertoires even when the information
about potential hosts is lacking. This significantly
increases the applicability of our method, as information
about fundamental host repertoires is missing for most
host–parasite systems. Potential host data is difficult to
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collect, as it requires experimental testing of a large
number of potential host–parasite pairs. A possible
improvement of our method, which we did not explore
here, would be to model uncertainty in the observations
of nonhosts when data on potential hosts are missing.
That is, if we had no information about a host species
being used by a particular parasite, we would translate
that to a certain probability p of the species actually
being a nonhost, and a complementary probability 1−p
of it being a potential host (Kuhner and McGill 2014).
Modeling this observational uncertainty could help
reduce the bias in parameter estimates that we observed
when data on potential hosts were missing and all 0-
valued states in the data set were inappropriately treated
as true nonhosts. This extension would also allow us
to make predictions about host use abilities in extant
parasites that could then inform experiments that aim
to characterize fundamental host repertoires.

We demonstrated the empirical application of
our approach with a Bayesian inference of the
coevolutionary history between 34 Nymphalini
butterflies and 25 angiosperm families. We estimated
the rate of host repertoire evolution along each branch
of the butterfly tree as being 1.35 events per million
years. Bayes factors favored the dependence model,
MD, where the probability of gaining a given hosts is
affected by the phylogenetic distance between hosts,
thus highlighting the importance of accounting for
shared evolutionary history among host lineages. It is
also interesting to note that this effect was not large
enough to support MD when phylogenetic distances
between host plants were proportional to divergence
time (anagenetic distances). As expected, � tends to be
lower and harder to infer in star-like host phylogenies,
whose divergence times are clustered near its root node.
Perhaps of greater interest, because the estimates of �
were lower when estimated using anagenetic, rather
than the cladogenetic, host distances, the result suggests
those traits that determine how easily a plant family is
colonized by Nymphalini originated close in time to the
origins of the plant families themselves.

Estimates of gain and loss rates were not symmetric,
and the rates also varied between states. According to
our results, gain of the ability to use a host, �01, is very
rare (0.8–2% of overall rate), whereas loss is common
(59–83% of overall rate). On the other hand, transition
rates between states 1 and 2 were more symmetric (�12
between 5% and 22%; �21 between 8% and 21% of overall
rate). These rate estimates support the idea that the use
of the same host lineage by multiple, phylogenetically
widespread butterfly lineages is more likely explained
by recolonization of hosts that have been used in the
past (recurrence homoplasy), that is, by transitions
between actual and potential hosts, rather than by
completely independent colonizations of the same host
(Janz et al. 2001). Note that alternative scenarios that
have been proposed in the literature to explain the
evolution of Nymphalini host plant preferences, for
instance by involving narrow ancestral host plant ranges
and repeated independent colonization events (Hardy
and Otto, 2014, e.g.), are also allowed by our model,
but they are inferred to be much less likely than the

conservative host repertoire scenario. Yet, because the
potential host state is exited at the highest rate, the
rate estimates also suggest that parasites do not retain
their potential host relationships for prolonged periods
of time. The moderate rates of transitions between
potential and actual host states and the high departure
rate from the potential host state together help explain
why phylogenetic “pulses” of recurrent host acquisition
manifest in some lineages but not others.

For example, the use of Grossulariaceae by two
nonsister clades within Polygonia is best explained by
a scenario where Grossulariaceae was a potential host
for the ancestral species (node 60 in Fig. 8) and was
subsequently gained as an actual host twice (at nodes
53 and 58, Fig. S5 available on Dryad). The ability to use
Salicaceae host plants seems to be even older. Salicaceae
was likely a potential host for the ancestor of Nymphalis
+ Polygonia and later became an actual host in three
different parts of the clade. If potential hosts were not
explicitly modeled here, these transitions would look
like three independent colonizations of a plant group
that is very distant from the ancestral host (Salicaceae
and Urticaceae diverged about 90 Ma). Instead, we could
show that what might appear as big and sudden host
shifts are in fact the result of retention of ancestral host
use abilities.

Understanding how ecological interactions change is
crucial if we want to predict both short- and long-
term consequences of global mixing of biota (Hoberg
and Brooks 2015). Host–parasite interactions are of
particular interest given the risk of emerging diseases,
which can affect human populations directly and
indirectly through their effects on crop species and
wildlife (Brooks et al. 2014). Our method was designed
to quantify changes in host–parasite interactions by
modeling the process of gaining and losing hosts, thus
allowing us to make predictions based on host–parasite
history. We hope our approach will not only generate
deeper insights into the evolutionary dynamics of host–
parasite interactions but also help humankind mitigate
some of the risks incurred by current environmental
change.
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