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Abstract.—Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing
the need for new approaches to statistical model representation and software development. Clear communication and
representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii)
software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for
beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable
dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in
recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies
in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based
on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists
and in the development of generic software for simulation and statistical inference. Here, we provide an introduction
to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of
phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the
subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model
framework and introduce modules to simplify the representation of standard components in large and complex models.
Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference
using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models;
inference; modularization; statistical phylogenetics; tree plate.]

… early attempts at reconstructing
evolutionary trees using computers are
leading to a clarification of our basic
ideas as to how it should be done. It has
become particularly clear that any attempt
at producing an evolutionary tree must be
based on a specific model, for only then can
proper statistical procedures be adopted,
and only then are the assumptions implicit
in the method clear for all to see.

— A. W. F. Edwards (1966:440)

A basic phylogenetic model consists of a tree
with branch lengths and a continuous-time Markov
model describing how the characters—morphological
or molecular—change along the branches of the tree.
Almost every described phylogenetic model fits this
theme, which makes it tempting to think that biologists
face simple modeling considerations. Yet, this is
decidedly not the case. The variations on the theme
of a continuous-time Markov model running along the
branches of a tree are seemingly endless. From all
described models, consider this incomplete list: JC69,
K2P, K3P, TN92, TN93, F81, HKY85, GTR, TKF91, TKF92,
WAG, BLOSUM, PAM, JTT92, LG08, REV, MTREV, GY94,
MG95, NY98, M0,M1,...M13, CAT (and CAT again),
MKv, Dayhoff, ECM, DEC, BM, OU, EB, CATBP, GG98,
TS98, G01, UCLN, UCG, RLC, ACLN, CIR, and WN.

(The field has inconsistently adopted the practice of
naming models with the initials of the authors followed
by the year of publication. Hence, JC69 refers to the
model first described by Jukes and Cantor in 1969.) The
number of models can be combinatorically increased by
the addition of suffixes, such as “+I”, “+�”, “+I+�”, and
“+SS”, which are different models for accounting for
rate variation across characters. The number of models
that are implemented in software and available to the
biologist is clearly large. Moreover, the scheme adopted
by phylogeneticists to name models suggests the field
has a considerable degree of opaqueness. Clearly, the
field could benefit from a generic method—a method
that can both represent all of the variables contained
in a model and their dependencies—for representing
phylogenetic models.

The number and complexity of phylogenetic models
presents significant challenges to the biologist. In some
ways, the barriers to understanding a phylogenetic
analysis have never been higher. Software that
is intended to simplify phylogenetic analyses can
sometimes be counterproductive. For example, some
software automates the choice of the phylogenetic model
for an analysis. However, this does not lead to any greater
understanding of the assumptions of the analysis by the
user (though such software may ensure a greater overall
quality of phylogenetic analysis). Failure to understand
the details of alternative phylogenetic models can lead
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to innocent mistakes caused by different models having
the same name (such as the CAT model, which is used
as a model for rate variation across sites and also as a
model for allowing stationary frequencies to vary across
a sequence).

To address these challenges, we believe it is time
to adopt a standardized way to describe phylogenetic
models. Specifically, we suggest following the lead of
the statistics literature, where similar problems are
encountered, and where graphical models are routinely
used to characterize complex models (Gilks et al. 1994;
Lunn et al. 2000; Jordan 2004; Koller and Friedman 2009;
Lunn et al. 2009). Graphical models provide a general
methodology that works for simple models as well as
for large models with thousands, or even millions, of
parameters (Jordan 2004). Such models are visualized in
a simple but comprehensible and exact manner. They
are independent of the criterion and algorithm used
for inference: as long as the model is the same, it does
not matter whether inference is performed under the
maximum likelihood or Bayesian criterion, or whether
Newton’s method, Markov chain Monte Carlo sampling
or Expectation Maximization is used.

The article is divided into three parts, each with
a different focus of required expertise in statistical
phylogenetics. We start with a general introduction
to graphical models for users of phylogenetic
methods. To this end we model the distribution
of the presence/absence of “the most diverse of
bones,” the baculum, in mammals (Long and Frank
1968). We draw the corresponding graphical model
representation, which we use to introduce the graphical
model formalism. We progressively transition into
phylogenetic models for discrete, continuous and
sequence characters but keep the mathematical and
technical details to a minimum.

In the second part, we discuss graphical model
representations of more typical models used in statistical
phylogenetics today. We introduce the concept of a
tree plate, which captures the structure learning (tree
topology estimation) part of a phylogenetic model and
greatly simplifies the resulting graph. We also discuss
how large and complex phylogenetic model graphs can
be modularized to produce more effective views on
the overall structure of the model while simultaneously
allowing detailed analysis of the model components
of particular interest. In the third part, we present
a more formal description of phylogenetic graphical
models. We also provide some well-known algorithms
on model graphs and relate them to standard algorithms
in phylogenetics to demonstrate the benefits of drawing
from the vast computational literature on probabilistic
graphical models. We conclude with a discussion on
the use and importance of graphical models to the
phylogenetics community.

AN INTRODUCTION TO PROBABILISTIC GRAPHICAL MODELS

The graphical model framework provides a valuable
set of tools for visually representing models. The

e) Plate

d) Clamped node
(observed)

c) Deterministic node

b) Stochastic node

a) Constant node

root internal tip
f) Tree plate

FIGURE 1. The symbols for a visual representation of a graphical
model. a) Solid squares represent constant nodes, which specify fixed-
valued variables. b) Stochastic nodes are represented by solid circles.
These variables correspond to random variables and may depend on
other variables. c) Deterministic nodes (dotted circles) indicate variables
that are determined by a specific function applied to another variable.
They can be thought of as variable transformations. d) Observed states
are placed in clamped stochastic nodes, represented by gray-shaded
circles. e) Replication over a set of variables is indicated by enclosing
the replicated nodes in a plate (dashed rectangle). f) We introduce
replication over a structured tree topology using a tree plate. This is
represented by the divided, dashed rectangle with rounded corners.
The subsections of the tree plate demark the different classes of nodes
of the tree. The tree topology orders the nodes in the tree plate and
may be a constant node (as in this example) or a stochastic node (if the
topology node is a solid circle).

various components of a graphical model representation
are defined in Figure 1. The following examples will
introduce each of the elements needed for constructing
model graphs.

A Non-phylogenetic Presence/Absence Model
The os penis (penis bone) of mammals, or baculum,

has an uneven taxonomic distribution. It occurs in five
orders of mammals (Patterson and Thaeler Carnivora,
Chiroptera, Insectivora, Primates, and Rodentia; 1982)
but is absent in all other mammalian orders, including
marsupials and monotremes. The evolution of this
character has been studied to determine potential use
of the presence of the baculum. Potential hypotheses
for the evolution of the baculum include (i) a purpose
as a stiffener for species with extended intromission,
(ii) to assist in sperm transport, or (iii) to provide
rigidity to stimulate female ovulation (Lariviére and
Ferguson 2002). Here we consider some of the modeling
considerations for a phylogenetic analysis of this
character. We choose to use Bayesian methods to conduct
these inferences, which means that we will need to
specify prior probability distributions for the variables
of our models. To simplify our analyses, we will sample
five species: a dog, a bat, a rat, a human, and a
koala. The Supplementary Material (http://dx.doi.org/
10.5061/dryad.nt898) presents similar analyses with a
much better taxonomic sampling of 274 species.

Our first attempt at modeling the distribution of the
baculum assumes that all species are independent of
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FIGURE 2. An explicit graphical model of the distribution
of a binary trait. Descriptions of the objects have been added for
pedagogical purpose. The presence or absence of the binary trait is
assumed to follow a Bernoulli distribution with parameter p. This
parameter is equal to the probability of the presence of the baculum
in an independently sampled species. We place a Beta prior density
on the Bernoulli distribution parameter, such that p∼Beta(�,�), where
�=1 and �=1 are the shape parameters of the Beta distribution. This
probability density is defined on the interval [0,1], thus 0≤p≤1.

one another but share the same probability of having
a baculum. The probability of obtaining a baculum
follows a Bernoulli distribution: with some probability
p, a species receives a baculum, and with probability
1−p, it does not. We specify a Beta prior probability
distribution on the value of p, which is adequate for
values between 0 and 1. This Beta distribution itself has
two parameters � and �, both of which we set to 1.
This choice conveys our lack of knowledge regarding
the value of p as it generates a uniform distribution
over [0,1]. The corresponding model is represented in
Figure 2. The graph is composed of nodes and arrows
joining them. The nodes correspond to variables of our
model, such as the Bernoulli parameter p, and the arrows
correspond to dependencies between the variables. For
instance, the top arrows show that the value of p depends
upon the parameters � and �. In fact, the dependency
structure in a graphical model is easily read by following
the arrows backwards from a dependent variable, to
which an arrow points, to the variable it depends upon.
In contrast, if we were to simulate data according to a
graphical model, the flow of the simulation would be
forwards along the direction of the arrows.

In Figure 2, we have chosen a somewhat verbose
description, with labels next to the nodes and arrows.
In more complex models, it is customary to dispense
with these names and only rely on the symbols
inside the nodes to avoid cluttering. In the same
manner that algebraic symbols are indispensable for
solving complex equations, the use of short symbols
is indispensable for representing complex probabilistic
models. However, the representation of nodes in the
graph carries additional information: square nodes are
constant nodes (e.g., � and �) that depend on no other
node (thus sometimes called source nodes), and circular
nodes are not constant (see Fig. 1). In the present model,
all circular nodes are stochastic, that is, each circular
node corresponds to a random variable, whose value
comes from a probability distribution. Some of our
stochastic nodes have been shaded (Fig. 2), which means
that they have been “clamped.” A clamped node is a

stochastic node whose value has been observed and thus
data are attached to the node. In our case, the bottom
nodes have been clamped because they correspond to
anatomical observations in the species of interest. We
inferred the value of p in this model using a Markov
chain Monte Carlo (MCMC) algorithm, and found that
its value was 0.57 with 95% highest posterior density
(HPD) interval of [0.23,0.88] (p̂=0.48, HPD = [0.42,0.54]
on the larger dataset, see Supplementary Material).

A Simple Phylogenetic Model
Obviously, this model fails to take into account

the known phylogenetic structure underlying the
distribution of the baculum among mammalian species.
We therefore propose a second model, in which the
presence/absence of a baculum is represented as
a binary character evolving along the mammalian
phylogeny. The evolution of this binary character is
modeled by a continuous time Markov process, which
only needs two parameters, the equilibrium frequency
� of character “1” and the set of branch lengths,
assuming that the Markov process is parametrized in
units of time (no transformation of the branch lengths is
necessary). At the root of the tree, we need to specify
a prior probability distribution over the parameter p
representing the probability of the presence/absence
of a baculum. As for the first model, we use a Beta
prior distribution with parameters � and � both set to
1 (p∼Beta(�,�)). We also need another parameter � for
the equilibrium frequency of the state 1, parameterized
the same way as p. We use the dated phylogeny of dos
Reis et al. (2012), pruned to contain only the five species of
interest or the 274 species in our dataset (Supplementary
Material; http://dx.doi.org/10.5061/dryad.nt898). We
assume this phylogeny is known without error (Fig. 3a).
Comparing Figure 3a and Figure 3b demonstrates how
the structure of the phylogenetic tree (partially) forms
the structure of the graphical model. The structure of
the phylogenetic tree can be recovered as a central
subset of the graphical model, because each node of the
phylogenetic tree is a stochastic variable in our model,
taking values 0/1, and depending only on its parent
node, the branch length and on the parameter � of the
continuous time Markov process. In the Supplementary
Material (http://dx.doi.org/10.5061/dryad.nt898), we
provide scripts for performing Bayesian inference with
this model and the complete dataset; it turns out there
is a 50/50 chance that the ancestor of mammals had a
baculum.

We believe such a graphical model representation is
a very powerful pedagogical construct, as it displays
the entire structure of our probabilistic model. It
makes it easy for a student or a reviewer to identify
key assumptions made by this model. For example,
although the evolutionary process is the same along
all branches of the phylogenetic tree, the model is not
stationary, because the root has an extra parameter for
the probability of presence/absence of the baculum
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FIGURE 3. The evolution of a single binary character represented as a phylogenetic graphical model. a) The phylogenetic relationships of the
five mammalian species. The observed state of the character (1: presence or 0: absence of the baculum) is given for each species. Other states at the
internal nodes represent the unknown ancestral state. The branches of the tree (1,...,8) are labeled and assigned a fixed length (l1,...,l8). b) The
corresponding graphical model, in which the species tree topology is still evident. We represent the state for each node with generic notation: S1
is the presence/absence state for node 1. The clamped nodes, in grey, indicate observed states, whereas unobserved states for ancestral species
are in white. Constant nodes indicate fixed/known branch lengths. Under this model, the state for the root of the tree (S9) is drawn from a
Bernoulli distribution with probability p. A Beta prior is assigned to the parameter of the Bernoulli distribution so that p∼Beta(�,�), where the
parameters of the Beta distribution are constant nodes and assigned fixed values. The states of the nodes descended from the root of the tree
(S1,...,S8) are dependent on the equilibrium frequency parameter (�) and their respective branch lengths (constant nodes l1,...,l8). A second
Beta distribution is applied as a prior on the parameter �, where �∼Beta(x,y).

(p �=�). However, even though our model is simple
and contains few species, our graph is already quite
busy. Clearly, an explicit representation is impractical for
large numbers of characters, or for much more complex
models, and some factorization needs to be performed.

Using Plates to Represent Repetition in the Graph
Data are inherently repetitive and this feature must

be efficiently captured by a graphical model. What if, in
addition to the baculum, we also wanted to analyze the
distribution of the os baubellum (clitoris bone), found in
females, and of a few other binary characters? Our model
graph would quickly become cluttered. To circumvent
this problem, the graphical model literature uses plates
to represent iteration (Jordan 2004; Koller and Friedman
2009). Plates are represented as a dotted rectangles on
top of which repetitive nodes are placed (Fig. 4). In a
corner of the plate, the number of repetitions—in our
case binary characters—is given. Assuming we analyze
N binary characters using the same underlying Markov
process running along the branches of the phylogenetic
tree, we need to put the entire phylogenetic tree on the

plate. In fact, the variables of both the leaves and the
internal nodes of the phylogenetic tree differ for each
character in our data matrix, because they correspond to
different characters and their ancestral states, though the
ancestor/descendant relationships remain unchanged.
We chose to leave the parameters of the probability of
presence/absence at the root off the plate, which means
that we assume the probability of presence at the root is
the same for all N characters. Similarly, we have left � off
the plate, assuming that all N characters evolve under
the same transition probabilities. These very strong and
debatable assumptions are highlighted by the graphical
model representation.

Graphical models are high-level representations that
do not depend on details of the model, such as
which distribution is applied to a variable. As a
result, similar models will have similar structural
representations. We provide in the Supplementary
Material (http://dx.doi.org/10.5061/dryad.nt898) the
example of a Brownian motion model of the evolution of
continuous characters to convey this point (Felsenstein
1985), and show here in more detail the example of a
model of sequence evolution. Note that graphical model
representations are not unique. In particular, the level
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FIGURE 4. A phylogenetic graphical model of N independently evolving binary characters. When sampling N different binary characters
for each extant species, we assume that these characters are independent and identically distributed. Thus the model for each character is the
same as in Figure 3b. Yet, the state for each character 1,...,N can be different. We use the plate notation to represent repetition over a vector of
elements. In this figure, the dashed box and the iterator i indicate the replicated variables. Thus, the plate represents separate variables of binary
character evolution for i in characters 1,2,3,...,N.

of detail in the representation may vary greatly. Here,
we use a relatively fine-grained representation but later
we will encounter more summary-like representations
of the same or similar models.

A General-Time-Reversible Model for Sequence Evolution
One of the most popular models of sequence evolution

is the general time reversible (GTR) substitution model
(Tavaré 1986). Here we give a simple example of
a GTR model for a fixed, nonclock tree with fixed
branch lengths. In this case, branch lengths are not
defined in units of time as in the previous examples,
but instead in expected numbers of substitutions
and for simplicity we consider that we have some
trustworthy exterior information about them. The
resulting graphical model is depicted in Figure 5a, and
is very similar to the previous figures for the binary

and continuous characters (Fig. 4 and Supplementary
Fig. S.1; http://dx.doi.org/10.5061/dryad.nt898). The
tree sits on a plate because it is replicated for N
sites. In this example, every character evolves under
a continuous time Markov model with transition rate
matrix Q and branch length lj where j denotes the index
of the branch. The transition rate matrix Q is defined
as a deterministic function computing the transition
rates by multiplying the exchangeability rates with
the base frequencies. This deterministic computation
is represented differently from other dependencies
among nodes, with a dashed arrow pointing into a
dashed node. The visually distinctive representation of
deterministic nodes is used to show that the value of a
variable is deterministically computed from the values of
parameters it depends upon, that is, by a transformation
of the parameters. This completes our compendium of
nodes used in graphical models.
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FIGURE 5. Explicit graphical model representation of a GTR model with a fixed tree topology. For pure convenience, we show here rooted trees
that demonstrate the similarity to previous figures. The model of character evolution is a continuous time Markov model parameterized by an
instantaneous rate matrix. The rate matrix Q is a deterministic variable computed by multiplying the base frequencies � with the exchangeability
rates �. A Dirichlet distribution is applied as the prior distribution on both the base frequencies � and the exchangeability rates �. a) A GTR
model with fixed branch lengths. b) A GTR model with estimated branch lengths. Each branch length is independent and identically distributed
under an exponential distribution.

Of course, branch lengths are often estimated instead
of being considered constant. In a Bayesian context
one would then have to provide priors for the branch
lengths. In Figure 5b, we show the graphical model
corresponding to a GTR model for a fixed tree, but in
which branch lengths are estimated. As is customary
in computer programs such as MrBayes (Ronquist et al.

2012), we use an exponential prior on branch lengths,
with parameter �. This choice of prior distribution can
naturally be replaced by other distributions, such as
a gamma distribution. Although this model is more
complex and its representation busier, the structure of
the tree can still be recovered from the graph. In fact,
all phylogenetic examples provided thus far share a
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common structure, namely the underlying tree structure.
We believe these strong similarities contribute to making
graphical model representation powerful for teaching
and understanding phylogenetic models. With some
use, it becomes easy to identify the unique parts of a
particular model, and the parts that relate it to alternative
models.

To summarize this introduction to the graphical model
framework (see Fig. 1), we have constant variables
represented with square nodes, and variables whose
value can change—during simulation or inference—
represented with circular nodes. Circular nodes can
be stochastic, with solid lines, or deterministic, with
dashed lines. Arrows pointing into variable nodes
represent conditional dependencies, visualized in solid
or dashed lines depending on the nodes they point into.
In addition, we have plates, which convey the concept
of repetition. In more formal terms, nodes placed on a
plate correspond to independent, identically distributed
variables. This list of graphical representations is
commonly used in the statistics literature (Lauritzen
1996; Jordan 2004; Koller and Friedman 2009). For
phylogenetics, where we often handle phylogenetic trees
that can contain large numbers of nodes, and whose
topology is often unknown and needs to be estimated,
other constructs are needed. Those constructs, for
example tree plates, are introduced in the next section.

PHYLOGENETIC MODEL GRAPHS

Ordinary graphical models are impractical for
describing realistic phylogenetic models for two reasons:
first, visual representations of these models become
crowded as the number of tips grow, and essential
information may become buried in a litany of
details. Second, ordinary graphical models fail to
represent topological (structural) uncertainty because
the dependency structure of the nodes in the graph,
corresponding to the phylogenetic tree topology, is fixed.
We solve both problems by adding a new element to the
list of graphical model conventions: a tree plate.

Tree Plates
A tree plate is very similar to a plate. However, where

a plate symbolizes repetition of a particular element in
the model, a tree plate symbolizes recursion: a given
variable depends upon a conceptually similar variable.
Recursion is a concept that fits naturally within a tree,
given that many nodes in a tree are both parents and
children of other nodes at the same time. Naturally,
recursive constructs need initiating and terminating:
the recursive description of a tree starts at the root
node, and terminates at the tips. This suggests that a
tree plate needs to account for three classes of nodes
at least: the root node, internal nodes, and tip nodes.
Contrary to internal nodes and tips, the root node does
not depend on a parent node in the tree. Contrary

to internal nodes, tips are often clamped to observed
values. Figure 6 represents a tree plate as a big, rounded
rectangle divided into three parts, one for each class
of nodes, with a tree variable attached to it providing
the structural information. Parent–child relationships
are handled by special functions for the indexing of the
parent node: p̃(j) represents the parent in the tree of
node j and c̃(i,j) represents the i-th child of node j in
the tree. A comparison between Figure 5 and Figure 6
shows how a tree plate can simplify the representation
of a phylogenetic model, and how it interacts nicely with
a plate. The example is extended in the Supplementary
Material (http://dx.doi.org/10.5061/dryad.nt898) by
the commonly used mixture model for rate variation
across sites, the GTR+� model (Yang 1994, 1996)
(see Supplementary Fig. S.2; http://dx.doi.org/10.5061/
dryad.nt898).

Importantly, the recursive representation of a tree
plate protects it against cluttering as the size of the tree
grows: no matter how many tips are included in the
tree, these three classes of nodes are enough to describe
most phylogenetic models. More classes are only
needed when the model further distinguishes between
nodes, for example when different models of sequence
evolution are associated with different subtrees or when
particular nodes are associated with time calibration
information. The tree plate also adequately addresses
the representation of topological uncertainty. Because
the tree plate uses a high-level, recursive representation
of a tree, it transcends a specific tree topology and instead
allows any tree topology. Only the specific value of the
tree variable ordering the tree plate reveals the actual
graphical structure of the model.

Modularization
Although tree plates simplify the representation

of a phylogenetic model, visualization remains a
challenge for the most complex models. As an example
consider the common case of a multilocus analysis
using a multispecies coalescent model, an uncorrelated
relaxed clock and a GTR+� substitution model, which
would contain, among others, Supplementary Figure S2
and Figure S3 (http://dx.doi.org/10.5061/dryad.nt898)
merged together. Clearly, such a figure would be
overwhelming. Ideally, one would like a method that
allows one to quickly convey the bigger picture while
allowing parts of special interest to be exposed in all
the necessary detail. For instance, it is common practice
to create new phylogenetic models by combining
existing model components, possibly in new patterns,
with new components. In such situations, it is
practical for a computational phylogeneticist to use a
simplified, high-level representation of the complete
model graph, and focus on the model subgraph(s) of
interest in the discussion of the novelties. Similarly, an
evolutionary biologist might be interested in effectively
communicating the crucial differences in the overall
structure of some models without going into all the
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lanretnitoor tip

SijSijSij

Sp̃(i)j Sp̃(i)j

i ∈ internals i ∈ tipsi = root

Q

π

e b

li li

λ

j ∈ N

Ψ

FIGURE 6. Simplified representation of the GTR model of Figure 5b using a tree plate. The tree plate, a big dashed box, divides the nodes
into three classes: the root node, internal nodes and tip nodes. The character state variables are named Sij where i denotes the i-th node and j the
j-th site. The root node does not have a parent node in the tree while the other nodes do. The internal nodes and the tip nodes depend on the
ancestral states. The ancestral variable of node i is obtained using the parent indicator function p̃(i). Tip nodes are clamped and thus shaded. A
tree topology is attached to the tree plate via the tree variable 	 shown on the left. The tree variable informs the plate of the structure and if the
tree variable changes, the structure of the resulting graph changes too.

model details. To address these challenges, we propose
a factorization of phylogenetic model graphs into
modules, each of which corresponds to a subgraph of
potential interest. The modules can be collapsed into
simple graphical objects to allow compact high-level
representation of a large model. One or more modules
can also be expanded to expose all the details of the
corresponding model subgraph. This allows one to
communicate both the overall structure of a large model
and the details of the model components of particular
interest.

Module decomposition of a phylogenetic model.—To factorize
a complex phylogenetic model graph into modules, we
introduce a new concept: pivot nodes. A pivot node is
simply a node sitting on the boundary between different
modules. A pivot node may be unique (e.g., a tree
variable or a rate matrix variable) or replicated (e.g., a
set of branch rates). Suitable pivot nodes are variables
that differ in alternative models (see Fig. 7). After a pivot
has been identified, the model graph is partitioned into
two modules, one module representing the upstream
structure of the model graph and the other module
representing the downstream structure, with the pivot
node being represented in both modules (see Fig. 8).

As a high-level representation of a module, we use
a solid rectangle containing appropriate text describing

the module. An upstream module is connected to a
downstream module by an arrow pointing to the latter
and thus depicts the dependency structure. When a
module is expanded to expose the details of the model
subgraph it contains, we use the standard phylogenetic
graphical model conventions. The connections between
the modules are made explicit by using the same
variable names and plate indices in all modules. Across
alternative complex models, a pivot node may be
stochastic, deterministic, or constant (see Fig. 7e–h). To
preserve the subgraph representation of the downstream
module in such cases, we suggest using a deterministic
node representation of the pivots in the downstream
module. This is compatible with the graphical model
conventions, in that the value of the pivot variable in
the downstream module can always be obtained as an
identity transformation of the corresponding variable
in the upstream module, regardless of whether the
pivot variable is constant, deterministic, or stochastic
in the latter. Moreover, a downstream pivot may be
replicated (e.g., the branch rates), while the upstream
version is not (e.g., a single rate applying to all branches).
In such cases, it is assumed that the downstream
instances are obtained by replication of the upstream
variable.

The most practical choice of pivot variables and the
corresponding modularization of phylogenetic model
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FIGURE 7. Top panel: module representation of different tree priors with 	 as a pivot node (note that 	 denotes a time tree with edge lengths
here, not simply a topology): a) Yule process (Yule 1925), b) constant rate birth–death process (Nee et al. 1994), c) decreasing speciation rate
birth–death process [speciation rate: �∗exp(−�t), e.g., in Höhna (2014)] and d) Coalescent process (Kingman 1982). Bottom panel: different rate
matrix modules with Q as a pivot node: e) Jukes–Cantor rate matrix where all exchangeability rates and all base frequencies are equal (Jukes
and Cantor 1969), f) F81 rate matrix where all exchangeability rates are equal but the base frequencies are drawn from a Dirichlet distribution
(Felsenstein 1981), g) T92 rate matrix with a parameter for the frequency of the GC content �GC and a transition-transversion rate (Tamura 1992)
and h) HKY85 rate matrix with the base frequencies drawn from a Dirichlet distribution and an estimated transition-transversion rate (Hasegawa
et al. 1985).

graphs is not obvious in all cases. These problems
will undoubtedly be discussed in the phylogenetics
community, and we expect that the use of modules will
evolve to some extent over time. However, we propose
some obvious pivot variables and associated modules
here, as a starting point for further discussion. Figure 8
presents one potential module factorization of the GTR
model (Fig. 6).

PhyloCTMC module.—The PhyloCTMC module is
commonly the core of a phylogenetic analysis. Typically,
the nodes representing the leaves of a phylogenetic
tree would be clamped to the observations contained
in a character matrix, such as a set of aligned DNA
sequences. A standard phylogenetic model contains
a single PhyloCTMC module, but more complex
models might have replicated PhyloCTMC modules,
for example, one PhyloCTMC module for each gene
using different rate matrices. It may be used in a simple
model where all characters evolve homogeneously or
it may be extended by, for example, using site-specific
rate-multipliers (Yang 1994, 1996), branch-specific
rate-multipliers (Thorne et al. 1998), branch-specific
substitution rate matrices (Yang and Roberts 1995;
Galtier and Gouy 1998), and site-specific tree topologies
(Boussau et al. 2009). Some of these extension are
described in the next modules.

Tree module.—The tree module represents the subgraph
describing the tree model, that is, the model of tree
topology and associated branch lengths or node ages.
A tree module could be used to represent a fixed
topology with or without fixed branch lengths. More
commonly, the tree module would be used to specify
a prior distribution on trees or topologies. In the main
example shown here (Fig. 8), the tree module is a
uniform distribution on unrooted topologies for K tips.
In this case, it is necessary to assemble the tree from the
topology and the branch lengths which can for example
be fixed or drawn from some distribution (e.g., an
exponential distribution with rate �). Alternative tree
modules (Fig. 7a–d) include the Yule or pure-birth
process (Yule 1925), the birth–death process with a
constant speciation and extinction rate (Thompson 1975;
Nee et al. 1994), the decreasing speciation rate birth–
death model [SPVAR in Rabosky and Lovette (2008) and
Models 5 and 6 in Höhna (2014)], and the coalescent
process (Kingman 1982).

Branch rates module.—Other suitable pivot variables are
the branch rate variables, producing an upstream branch
rates module. A branch rates module specifies the model
on a rate multiplier applied to the branch lengths. The
multiplier could either apply to all branches in the tree
(if it were represented by a single variable as in Fig. 8)
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FIGURE 8. The graphical model of Figure 6, a GTR+� model, represented in modular form. a) The model is broken into five different modules:
Tree, Rate matrix, Site rates, Branch rates and PhyloCTMC (Phylogenetic Continuous Time Markov Chain). By representing all modules in
collapsed form, we obtain a compact high-level visualization of the model. Arrows point from upstream to downstream components in the
complete model graph. b) By expanding the modules to expose the model subgraphs they contain, we obtain a detailed description of the model.
Note that the four upstream modules (Tree, Rate matrix, Site rates, and Branch rates) are all named after the corresponding pivot variable. Also
note that the symbols used for pivot variables are matched across connected modules, both by name and by plate or tree plate indices. Small
arrows aid the search for pivot variables. The only new variable added here, mij , is the deterministically computed rate multiplier for branch i
and site j, obtained by multiplying the branch length li with the branch rate ci and the site rate rj . Details of the modules are provided in the text.

or applied per branch (if it were replicated across the
tree plate). The branch rates module would be a central
component of relaxed clock models. It could also be used
to describe a rate multiplier for different gene partitions,
in which case the pivot variable would be replicated
across the gene partition plate in the downstream core
of the phylogenetic model, rather than across the tree
plate as in a relaxed clock model. An example of the
branch rates module for the autocorrelated lognormal

distributed rates (Thorne et al. 1998; Heath 2012) is
given in the Supplementary Material (see Fig. S.3;
http://dx.doi.org/10.5061/dryad.nt898).

Rate matrix module.—The instantaneous rate matrix of the
substitution model is the pivot variable of the rate matrix
module. The pivot variable may be unique and apply
to all sites and branches in the PhyloCTMC module
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in a branch-homogeneous substitution process. It may
also be replicated in the tree plate, for example, across
branches, in which case each branch would potentially be
characterized by a unique substitution process (Yang and
Roberts 1995; Galtier and Gouy 1998; Groussin et al. 2013),
across sites (Lartillot and Philippe 2004), or according to
models with explicit dependencies between neighboring
branches (Blanquart and Lartillot 2006). In all such cases,
the rate matrix module would describe the dependency
structure of the rate matrix variable. For instance, a
GTR rate matrix would be computed deterministically
from a vector of stationary state frequencies and a
vector of exchangeability rates (Fig. 8b). A large portion
of the phylogenetic model space considered currently
can be characterized by variations on the subgraph
structure corresponding to the rate matrix module. Some
examples are shown in Figure 7e–h.

Site rates module.—The final pivot variable we consider
here is the variable used to model heterogeneity of
rates across sites (Yang 1994, 1996) embedded in the
site rates module. Commonly, the rates for each site
are considered drawn from a gamma distribution. The
distribution is typically discretized for computational
reasons. Interestingly, a discrete gamma model could
be explicitly described by assuming that the site
rates are drawn from a discrete mixture of rates,
each rate being deterministically derived by computing
the appropriate discrete representation of a gamma
distribution (see Supplementary Material Fig. S.2;
http://dx.doi.org/10.5061/dryad.nt898). Alternatively,
each site rate may be drawn directly from the
gamma distribution, as in our example (Fig. 8b). Other
distributions than the gamma can be used for the rate
variation across sites, sometimes leading to better results
(Mayrose et al. 2005). In addition to models based on
simple continuous distributions, any mixture model of
rates (Pagel and Meade 2004, 2005) would be eligible
for the site rates module. For instance, a standard model
considered in the literature is a mixture of invariable sites
(rate zero) and gamma-distributed rates.

High-level modular graphs.—We end this section by a
simple example illustrating the power of high-level
modular graphs in summarizing the essential structure
of a large and complex model. For this example, let
us consider a model where we want to simultaneously
estimate a set of gene trees and the species tree into which
they fold. The high-level representation is obtained by
extending the previous module graph with a species
tree–gene tree model (Fig. 9). The gene-tree part of the
model sits on a plate representing the replication over
genes. The PhyloCTMC module is shaded to reflect the
fact that it is clamped to the observations, that is, the
sequences at the leaves. All gene trees depend on a
single species tree through an appropriate model, for
instance the multispecies coalescent. The species tree
itself is a tree module, just as the gene-tree module, but

Species Tree

Gene Tree Rate matrix Site rates Branch rates

PhyloCTMC

genefamily ∈ {1, 2, . . . , N}

FIGURE 9. Module representation for a species tree-gene tree model.
We simply extend the previous phylogenetic model by substituting the
simple tree module by a modular representation of a species tree prior
and a gene-tree distribution given the species tree. The gene tree with
the entire substitution process sits on a plate representing that the
model is repeated across genes. The PhyloCTMC module is shaded to
reflect the fact that it is clamped to observations.

it is simpler in structure. For instance, the species tree
model might be a birth–death process (see Fig. 7).

This concludes our introduction to tree plates
and modular graphs, essential concepts in providing
compact representations of phylogenetic graphical
models. Tree plates capture the variable, stochastic
nature of the dependency structure of the model
subgraph corresponding to the phylogeny. They also
exploit the repetitive, recursive structure of phylogenetic
trees to provide stringent summaries of the essential
details. Modular graphs are essential in providing
high-level, compact representations of large and
complex phylogenetic models. They provide a lot of
flexibility through the possibility of collapsing and
expanding various model components according to the
specific needs in a particular situation. Large sets of
complex models with minor variations in some model
components are summarized very efficiently.

COMPUTATIONS ON MODEL GRAPHS

Probabilistic graphical models, often denoted as
Bayesian networks, have long been a major focus in
statistics and computer science, and the resulting body
of knowledge applies directly to phylogenetic graphical
models (PhyloGMs). In fact, unbeknownst to many
in our field, the algorithms used in phylogenetics
usually have well-studied equivalents in the computer
science literature. Below, we first provide a mathematical
definition of directed acyclic graphs (DAGs), and discuss
the rationale for using them in PhyloGMs. We continue
by showing how the generative nature of probabilistic
graphical models can be used directly in simulation
We then describe some of the standard algorithms on
probability graphs and their applications to phylogenetic
problems. For a more thorough introduction to the field
of graphical model algorithms, we direct the reader
elsewhere (e.g., Koller and Friedman 2009).
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DAGs
We begin with some mathematical notation that we

need to explain the computation on model graphs. A
directed graph G consists of a set of nodes (vertices) V
and a set of directed edges E connecting those nodes, that
is, G = (V,E). A directed edge from node a to node b is
denoted by the pair (a,b). Direction implies that if (a,b)∈
E then (b,a) /∈E . A path through the graph is a sequence of
nodes, where each node (except the last one) is connected
by a directed edge from itself to its successor. If a path
visits the same node twice, the path contains a cycle. By
definition, a directed graph is acyclic if there does not
exist any path in the graph that contains a cycle.

DAGs predominate phylogenetic models for two
reasons. First, the relationships among study taxa, on
which we build the core of a phylogenetic model, are
inherently directed (tipwards) and acyclic because the
transmission of genetic material is exclusively from
ancestor to descendant. Second, there are good reasons
also from a statistical perspective to focus on DAGs.
A random variable depends on the parameters of its
distribution, which form its parents in the model graph.
This is naturally related to causation, and justifies the use
of directionality in model graphs. Undirected or cyclic
graphs can be used as well to represent a model, but
these representations are complex and typically avoided
by statisticians, and currently we see no need for them
in phylogenetics.

Simulation
Simulating data from a model is essential in many

applications, for instance in exploring model properties
(Huelsenbeck 1995) or in model adequacy testing
(Bollback 2002; Brown and ElDabaje 2009; Höhna 2013).
Simulations are also used to validate inference methods
and to initialize MCMC runs. Since probabilistic
graphical models are generative, that is, they specify
how to generate data from the model, simulation is
straightforward. We simply traverse the model graph
from the source nodes toward the sink nodes, drawing
values of each random variable conditioned on the
already generated values of its parent nodes.

As an example, consider the evolution of a binary
character under the model presented in Figure 3. The
key to the simulation is the simulation sequence of the
random variables, obtained from the structure of the
model graph. That is, the parameter of the process,
the root frequency and the stationary frequency, are
simulated first. Afterwards, a realization of the two-
state continuous time Markov process is simulated (see
Fig. 10).

Simulations can be used directly for inference. For
instance, the posterior probability of the parameters of
interest can be computed by generating many random
draws from the unclamped model, only keeping those
that yield the observed data. This approach is very
inefficient in most cases, and it is better to estimate the
probability using other methods, as described below.

0 0 0 1 1

0 1

1

1

0.93

α β

0.34

x

y

l1 l2 l3 l4 l5

l6 l7

l8

FIGURE 10. Simulation of data using the graphical model of Figure 3.
All simulated values are colored in blue. First, the root probability
is drawn from a Beta(�=1,�=1) distribution, yielding 0.93, and the
stationary probability is drawn from a Beta(x=1,y=1) distribution
resulting 0.34. Then, the characters of the root node followed by the
characters of the internal nodes and tip nodes are simulated under the
two-state continuous time Markov process.

Factorization
A fundamental justification for a graphical model is

that it helps us answer questions about the random
variables in the model. Perhaps the most important
question concerns the joint probability of a set of
variables. The model graph allows us to compute this
efficiently using factorization. Let us define the set U as
the collection of random variable nodes in the model
(with U being a subset of V). U is the complete set of
stochastic variables in V and all remaining variables are
either constant or deterministic. For each u∈U , there
is a corresponding random variable in the model, Xu.
The set of parent nodes of a node u is denoted by �u.
Note, �u denotes all parents in the model graph and
not only the single parent specified by tree structure
mapping function p(u). If a variable is indexed by a
set of indices such as �u we mean the set of random
variables with {Xp :p∈�u} and use the short form {X�u}.
Let xu represent a realization of Xu. For notational
convenience, we will assume in this section that all
random variables are discrete, although generalization
to continuous variables is trivial in most cases (excluding
only marginalization and variable elimination). The
conditional independence structure of the model graph
allows us to break the problem into pieces (factors),
each restricted to one node and its immediate parents,
resulting in convenient and efficient computation.
Specifically, given the set of conditional probabilities
(or probability density functions) {P(xu|x�u )}, the joint
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probability (density) is obtained as

P({xu :u∈U})=
∏
u∈U

P(xu|x�u ) . (1)

We return to example provided in Figure 3. The
model contains the variables with their probability
distributions:

p ∼ Beta(�=1,�=1)

� ∼ Beta(�=1,�=1)

S9 ∼ Bernoulli(p)

Si ∼ CTMC(Sp̃(i),li,p) for i in {1,...,8}.
Then, the joint probability density of the all variables is

P(p,�,S1,...,S9)=PBeta(p,1,1)×PBeta(�,1,1)

×PBernoulli(S9,p)×
8∏

i=1

PCTMC(Si,Sp̃(i),li)

=pS9 (1−p)1−S9 ×
8∏

i=1

⎧⎨
⎩

�′
i +(1−�′

i)exp(−li/(2�−�2)) if Si =Sj

(1−�′
i)∗(1−exp(−li/(2�−�2)) if Si �=Sj

(2)

where �′
i =� if Si =1 and �′

i =1−� if Si =0. This joint
probability density can be used to estimate the maximum
likelihood parameter estimates, or, as we did in our
analysis, to compute the posterior probability density
of individual parameters. Equation (2) is often denoted
as the posterior probability density in Bayesian analyses
and the posterior density of single parameters is
obtained by marginalizing over all other parameters.

Conditional and Marginal Distribution
A common set of questions concerns the conditional

probability or marginal distribution of one or more
random variables (the query nodes), given fixed
values of some other variables (the evidence nodes),
summarizing over all possible values of (marginalizing
out or eliminating) the remaining variables. For instance,
we might have observed the character states of the
tip nodes in a phylogenetic tree (evidence nodes), and
want to infer the probabilities of the different states
of a named interior node (query node), summarizing
over all possible state assignments to other interior
nodes (remaining nodes). Formally, let E be the set of
(indices of) evidence nodes, F the query node, and R
the remaining stochastic nodes. To obtain the conditional
probability of a state xF of the query node (conditioned
only on xE), we need to sum the probabilities over all
possible assignments of states to the R nodes. To obtain
the marginal distribution of the query node and the
evidence nodes, we need to compute

P(xE,xF)=
∑
xR

P(xE,xF,xR), (3)

which can be further marginalized over the query node
states to give the marginal probability of the evidence
nodes

P(xE)=
∑
xF

P(xE,xF), (4)

from which we obtain the conditional probability of the
query node

P(xF|xE)= P(xE,xF)
P(xE)

. (5)

The problem here is that
∑

xR
expands into a series

of summations with a large number of terms. If there
are |R| random variables, each of which can take on
k values (e.g., four nucleotide states or 20 amino acid
states), we have k|R| terms in total. The large number
of terms makes naive summation impossible except in
the most trivial cases of very few variables with few
states. The solution is to eliminate the R nodes one
by one using the variable elimination algorithm (Koller
and Friedman 2009). The computational complexity
of variable elimination depends on the elimination
order and the dependency structure of the graph (it
is exponential with the tree width of the graph). In
general, finding the optimal order is NP-hard, but good
heuristic algorithms are available for the general case,
and optimal orderings are known for many common
types of graphs such as chain graphs and tree graphs.
Variable elimination algorithms are routinely used for
marginal ancestral state reconstruction on phylogenetic
trees (Yang et al., 1995).

Sum-Product Algorithm and Belief Propagation
Trees are important types of graphs, and variable

elimination in such graphs is accomplished by the so
called sum-product algorithm (Gallager 1962; Pearl 1982;
Jordan 2004; Ahmadi et al. 2012). In phylogenetics, the
algorithm is known as Felsenstein’s pruning algorithm
(Felsenstein 1981). The sum-product algorithm is more
limited than variable elimination, in that it is restricted
to tree graphs. However, it is more general in that it can
compute the marginals of all nodes in the tree using
just two passes over the tree, each with the same time
complexity as simple variable elimination. The sum-
product algorithm is often described as message passing
or belief propagation, both important concepts in graphical
model algorithms. Here we provide a short description
of belief propagation and refer the reader to Kschischang
et al. (2001) and Ahmadi et al. (2012) for more detailed
elaborations.

Belief propagation gets its name from the exchange
of requests for messages and messages between nodes
of the model. In the first pass, requests are propagated,
and then in the second pass messages are propagated.
More precisely, the algorithm works as follows:

1. Send message requests to all neighboring nodes,
starting by the (arbitrarily chosen) root node.
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2. Only process a request for a message from a
neighbor if all messages from other neighbors have
been received, and send out request if necessary.

3. When all messages have been received, compute
the marginal probabilities.

A message consists of a vector of (typically
unnormalized) marginal probabilities, one for each
possible state. For instance, in a nucleotide model there
would be four probabilities in the message, one for each
state (A, C, G, or T). More formally, a node j would send
a message mji to a neighbor i consisting of elements of
the kind

mji(xi)=
∑
xj

⎛
⎝P(xi,xj)

∏
k∈N(j)\i

mkj(xj)

⎞
⎠, (6)

where N(j) are the immediate neighbors of node j in
the tree graph, and P(xi,xj) represents the probability
of a substitution from state xi to state xj (or in the
other direction, depending on the direction of the
edge connecting i and j). The sum and product signs
appearing in the message equation give the algorithm
its name.

The nodes are visited first in a depth-first (postorder)
traversal of the tree to guarantee effective sequential
processing, from the tips toward the root, and then in
the reverse order (preorder), proceeding from the root
toward the tips (Fig. 11). Undirected (unrooted) trees
are rooted first on an arbitrarily chosen node in order
to apply the standard traversal algorithms. When the
root has been reached in the first pass, we have all
the necessary information to compute the probability
(or likelihood) of the whole tree. We simply multiply
all messages received by the root node to obtain the
marginal probability for each state. Averaging over states
then gives pE, the probability of the entire tree given the
tip states (the evidence). Then, the second pass over the
tree starts from the chosen root node again and consists
only of sent messages of the marginal probabilities for
each state toward the tips (see Fig. 11b). The second pre-
order traversal of the tree is only needed if the marginal

probabilities are to be computed for other nodes in
the tree, for instance, if one wants to draw ancestral
states of nonroot nodes from the corresponding marginal
distributions.

Factor Graphs.—Many algorithms on graphical models,
such as belief propagation, are designed and/or
optimized for factor graphs (Kschischang et al. 2001;
Loeliger 2004; Ahmadi et al. 2012). Moreover, algorithms
studied for various types of graphical models are unified
by factor graphs and many general results and insights
can thus be transfered from one application to another.
Factor graphs are favored to describe belief propagation
because the messages are passed to and from the factor
(computation) nodes along the edges containing the
variables.

Factor graphs are more fine-grained versions of
graphical models, in which the probability distribution
(the factors) of each random variable are made explicit
by including the distribution as separate nodes in the
graph (Fig. 12). Furthermore, the direction is dropped
in the model graph to show that the computed value of
the factor (the probability) depends on the parameters
as well as the random value. Every model graph that
is represented by a DAG can be converted into a
factor (see Ahmadi et al. (2012) for some examples and
elaborations). We show an example of the conversion in
Figure 12.

The factors, or local functions, are simply the
conditional probability density function (Ahmadi et al.
2012). In the example given in Figure 12 the factorization
yields

f (p,�,S1,...,S9)= fBeta(p,�,�)×fBeta(�,x,y)

×fBernoulli(S9,p)×
8∏

i=1

fCTMC(Si,Sp̃(i),li) (7)

which corresponds exactly to Equation (2). However, the
reverse transformation is not that simple and not every
factor graph can be represented as a DAG without major
modifications.

a)

1

2

3
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4
5

7
8

b)

1

2
3

4

#

#

Send Request

Receive Message

FIGURE 11. Message passing (belief propagation) on a tree graph. a) First phase, passing messages from the tips toward the root. b) Second
phase, passing messages from the root towards the tips. After the second phase, all nodes have received messages from all of their neighbors,
and their marginals can be computed. If only the probability of the entire tree or the marginals of the root node are of interest, the second phase
is not needed.
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FIGURE 12. A factor graph representing the binary character evolution model introduced in Figure 3. The factor graph additionally displays
the probability distributions (the factors) as part of the model graph, for example, a Beta distribution, Bernoulli distribution and continuous time
Markov chain (CTMC). A factor graph is always an undirected graph showing only the relationship between the variables and the corresponding
distributions.

Belief propagation on factor graphs goes far beyond
tree-like (cycle free) graphs and therefore also far beyond
Felsenstein’s pruning algorithm, which corresponds to
the first pass of the algorithm. It can be extended to
accommodate other types of graphs than trees (Loeliger
2004). A phylogenetic example is the variable elimination
in a GTR + � model, which involves elimination of both
character states and rate categories in a graph that is not
a tree. Thus, any additional mixture model component
of the substitution process may be integrated/summed
over numerically by applying the belief propagation
algorithm. Hence, belief propagation can be used in
various other examples such as a mixture over the rates of
positive selection (Yang and Nielsen 2002; Huelsenbeck
and Dyer 2004), mixture over tree topologies (Boussau
et al. 2009), and mixture over branch rates (Heath 2012).

Modifications of the computation of the message in
the belief propagation algorithm can be used to find the

maximum a posteriori probability (the so-called Viterbi
algorithm (Forney Jr, 1973)) or the maximum a posteriori
configuration over a set of stochastic nodes (max-product
or min-sum algorithm (Tanner, 1981)). An example of the
latter would be the computation of the set of character
states at ancestral nodes most likely to have produced
an observed set of tip states. Belief propagation is a
type of dynamic programming, which is one of the most
important techniques in computational optimization.

MCMC Sampling
MCMC sampling is a core technique used in Bayesian

inference. It is relatively straightforward to set up a
Markov chain that has the distribution of interest, the
posterior probability, as its stationary distribution but
convergence to the target distribution is often relatively
slow. Therefore, the algorithm needs to be run for many
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generations, and computational efficiency is paramount.
Model graphs provide an elegant way of structuring
the conditional dependencies in such a way that the
computational efficiency of MCMC algorithms can be
maximized. It is no coincidence that BUGS (Spiegelhalter
and Lauritzen 1990; Lunn et al. 2000, 2009, 2012), one
of the most successful software packages for Bayesian
inference, is built entirely around graphical models. In
fact, the BUGS team were among the early adopters of
graphical models and contributed importantly to their
development, for example, by introducing deterministic
nodes to capture variable transformations.

We illustrate the use of graphical models in Bayesian
MCMC sampling in the context of the standard
Metropolis–Hastings algorithm (Metropolis et al. 1953;
Hastings 1970). In iteration t of the algorithm, the
stochastic nodes U start out having the values x(t) ={x(t)

u }.
The iteration then consists of the following steps:

1. Propose new values x′ according to a proposal
density q(x′|x(t)).

2. Compute the acceptance probability

�=min
(

1,
P(x′)
P(x(t)) × q(x(t)|x′)

q(x′|x(t))

)
.

3. With probability � accept the proposal and set
x(t+1) =x′; otherwise reject the proposal and set
x(t+1) =x(t).

The computationally expensive step is to obtain the
ratio of the joint probability of the model before and
after the proposal, p(x′)/p(x(t)). In theory, a proposal
could involve changing values of all nonclamped
stochastic nodes in the model, making it difficult to
achieve computational efficiency. In practice, however,
a mixture of many different proposal mechanisms is
used, with each proposal changing the value of only
one or a few stochastic nodes. Taking advantage of the
conditional-independence factorization provided by the
graphical model formalism, we can quickly identify the
minimal set of conditional probabilities that need to be
updated.

Consider a proposal changing just one stochastic node
i and let c(i) denote the children of that node. In principle,
we need to calculate

P(x′)
P(x(t))

=
∏
u∈U

P(x′
u|x′

�u
)

P(x(t)
u |x(t)

�u )
,

a product over all nodes in the graph. However, for all
nodes in U except i and c(i), the conditional probabilities
are going to be the same before and after the move.
Therefore, we can simplify the calculation to

P(x′)
P(x(t))

= P(x′
i|x(t)

�i )

P(xi|x(t)
�i )

×
∏

u∈c(i)

P(x(t)
u |x′

i)

P(x(t)
u |x(t)

i )
.

Thus, only the changed node and its children need
to be considered in calculating the model probability

ratio (Spiegelhalter and Lauritzen 1990). Similarly, if the
proposal changes the values of a set of nodes rather than
a single node, it is sufficient to consider the changed
nodes and their children in calculating the probability
ratio. As an illustrative example consider the case when
a new value for the probability p of a baculum of the
common ancestor of all taxa is proposed (see Fig. 3).
The joint probability density was given in Equation (2)
and the computation for the full dataset contains many
factors. However, the probability ratio simplifies to

P(p′)
P(p(t))

=
(

p′
p(t)

)S9 (
1−p′

1−p(t)

)1−S9

(8)

regardless of how many taxa are included in the study.
The probability ratio is clearly simpler than the joint
posterior probability density and the ratio thereof and
the computation is much faster.

Finally, consider Gibbs sampling (Geman and Geman
1984; Gelfand and Smith 1990), a special case of the
Metropolis–Hastings algorithm, in which the proposal
distribution is the posterior probability distribution of
the changed variable(s), conditional on the values of
the other random variables in the model. Simultaneous
Gibbs sampling of all unclamped random variables in
a model would be equivalent to random draws from
the target distribution, which is difficult to beat in terms
of sampling performance. In practice, one is happy if it
is possible to do Gibbs sampling of individual random
variables in the model. Specifically, Gibbs sampling of a
random variable is possible when the distribution from
which it is drawn (the prior) is conjugate with respect
to its conditional posterior. In this context, conjugate
means that the two distributions come from the same
family of distributions. The graphical model structure
is helpful both in checking for conjugate distributions
and in implementing Gibbs sampling where it is feasible.
This property of graphical model has been exploited
extensively by BUGS (Spiegelhalter and Lauritzen 1990;
Lunn et al. 2000, 2009, 2012).

More Computation on Model Graphs
In this section, we have only skimmed the surface

of the literature on graphical-model computation.
We have not covered methods that allow efficient
maximum likelihood inference by using the structure of
graphical models, such as the expectation maximization
(EM) algorithm or variational methods that minimize
Kullback–Leibler divergence (Koller and Friedman
2009). We have not discussed the analysis of conditional
independence, and many other methods of interest.
However, our examples have hopefully demonstrated
the relevance of the rich graphical-model literature
to statistical phylogenetics. Our point is not that
phylogeneticists have necessarily been hampered
significantly thus far by ignoring graphical models.
However, the benefits of adopting the graphical models
framework will increase rapidly over the coming
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years, as phylogenetic models become increasingly
complex.

DISCUSSION

Statistical phylogenetics has developed to the point
where the number and complexity of phylogenetic
models are posing serious challenges to theoreticians,
empiricists, and software developers alike. It would
represent a big step forward if the field adopted
a standardized and efficient way of describing
phylogenetic models and exposing their underlying
structure. We argue that the graphical models
framework, used by statisticians to address similar
challenges, provides an appropriate tool to this end.
Graphical models have not been used in phylogenetics
previously (except in the code of Coevol (Lartillot and
Poujol 2011)) but they have been applied to many other
research areas and several workers have suggested their
use in phylogenetics (Lunn et al. 2000; Friedman et al.
2002; Friedman 2004; Jordan 2004; Lunn et al. 2009;
Koller and Friedman 2009).

Graphical models are based on the idea of breaking
large probabilistic models into components representing
conditionally independent probability distributions.
Additional representational power is obtained by
using plates for replication and deterministic nodes
for variable transformations. Although many aspects
of phylogenetic models can be readily described
using these standard graphical model concepts,
the phylogenetic models also present some special
difficulties.

The core part of a PhyloGM, the one corresponding
to the evolutionary tree, is unusual in a graphical
models perspective both because it can be so large
and because the graph structure (the topology) is
considered a random variable subject to estimation. To
address these challenges, we introduced tree plates.
They allow efficient representation of large trees with
many tips and they also capture the structure learning
nature of tree topology inference. We further simplified
the representation of large and complex phylogenetic
models by introducing a modular representation that
breaks them into connected subgraphs at carefully
chosen variable nodes, called pivot nodes. The modular
representation is highly flexible, allowing both compact
high-level representation of models and efficient
detailed exposition of the model subgraphs of particular
interest. By combining different modules in various
patterns, a large set of models can be represented very
efficiently.

With the addition of tree plates and modularization,
we believe that graphical models are ready for wide use
in the statistical phylogenetics community. They provide
a rich framework for teaching and communicating
probabilistic models. With their explicit representation
of assumptions and variable dependencies, they
facilitate the understanding of complex models and
they reduce the risk of similar models being confused.

Graphical models should be useful both for empiricists
who want to learn the essential features of models and
for theoreticians who want to communicate new models
and put them in the context of previously published
models.

Of course, graphical models also have limitations.
Some distributions cannot be broken into smaller
components, for example, the birth–death process or
joint processes affecting multiple variables. A more
serious challenge is to represent uncertainty concerning
the structure of the graph. For instance, an evolutionary
model for unaligned sequences has an element of
structural uncertainty because we wish to learn how
individual sequence positions are related (aligned) to
each other. It is always possible to construct a large joint
distribution in such cases, but this limits the power of
the graphical model representation. A better approach
might be to find notational extensions, similar to the
tree plate.

Clearly, adopting the graphical model approach
would help connect statistical phylogenetics to other
science areas, promoting interdisciplinary cross-
fertilization that may well turn out to be productive.
For example, graphical models have been well studied
from a computational perspective. Many algorithms
are known for efficiently computing joint or marginal
probabilities, and for performing MCMC sampling
or simulation on probabilistic model graphs. In fact,
as we have shown, many of the standard algorithms
used in computational phylogenetics have older and
well-studied equivalents in the literature on model
graphs. As phylogenetic models grow in complexity
in the future, the existing work on model graph
algorithms may well prove to be a treasure trove for
phylogeneticists, greatly facilitating the development
and implementation of new models. For example, we
only provided some algorithms to sample from the
posterior probability distribution (Metropolis–Hastings
and Gibbs sampling) although other strategies, such
as data augmentation, have been shown to be more
efficient (Rodrigue et al. 2008; Landis et al. 2013) and
have been used in conjunction with graphical models
(Lartillot and Poujol 2011).

Graphical models may also help forge links between
statistical phylogenetics and other fields of applied
statistics. Applied statisticians often summarize models
using formulae of the type y∼ f (�,�), specifying that
a random variable y is drawn from some distribution
f with parameters � and � (for a range of examples,
see Lunn et al. 2012). Such model formulae are rarely
used in phylogenetics today. However, they are closely
related to graphical model concepts, so phylogeneticists
adopting this framework are likely to find such model
formulae helpful and informative summaries of their
models. This, in turn, will make it easier for applied
statisticians to contribute to phylogenetics.

Last but not least, the adoption of graphical models
would facilitate the design and development of
computational phylogenetics software. There are
decidedly some challenges involved in doing this,
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particularly in finding efficient software representation
of the huge PhyloGMs. However, regular plates
and tree plates help identify some of the replicated
structure that can be used in efficient implementation
of PhyloGMs. Modularization also encourages good
software engineering principles, in that it supports
a natural, high-level design with exchangeable and
reusable components corresponding to standard
modules in PhyloGMs.
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