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Bayesian phylogenetic inference aims to estimate the evolutionary relationships
among different lineages (species, populations, gene families, viral strains, etc.)
in a model-based statistical framework that uses the likelihood function for
parameter estimates. In recent years, evolutionary models for Bayesian anal-
ysis have grown in number and complexity. RevBayes uses a probabilistic-
graphical model framework and an interactive scripting language for model
specification to accommodate and exploit model diversity and complexity
within a single software package. In this unit we describe how to specify
standard phylogenetic models and perform Bayesian phylogenetic analyses
in RevBayes. The protocols focus on the basic analysis of inferring a phy-
logeny from single and multiple loci, describe a hypothesis-testing approach,
and point to advanced topics. Thus, this unit is a starting point to illustrate the
power and potential of Bayesian inference under complex phylogenetic models
in RevBayes. C© 2017 by John Wiley & Sons, Inc.
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INTRODUCTION

Phylogeny programs, in general, seek to estimate the evolutionary history of a study
group from a set of sequences. Several different methodologies exist for estimating
phylogenies, including distance-based methods, parsimony, maximum likelihood, and
Bayesian inference. Distance-based methods and maximum parsimony estimate a phy-
logeny based on their respective optimality criteria, e.g., the smallest number of changes
required to explain the observed sequence data. Maximum likelihood and Bayesian in-
ference, on the other hand, use stochastic models of evolution to describe the observed
data. Bayesian methods are attractive for their ability to directly quantify uncertainty
in parameter estimates and because they remain efficient when applied to relatively
complex models. However, Bayesian inference requires the specification of prior proba-
bilities that are transformed by the likelihood function into posterior probabilities, which
demands special considerations. For a more detailed comparison of different phylogeny
inference methods, we refer the reader to more comprehensive reviews, such as Huelsen-
beck, Larget, Miller, & Ronquist, (2002); Holder & Lewis (2003); and Yang & Rannala
(2012).
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Phylogenetic inference in a Bayesian statistical framework aims to estimate the poste-
rior probability distributions of phylogenetic parameters for a given study group. These
parameters include the phylogenetic relationships among lineages, the amount of diver-
gence between lineages, rates of substitution, rates of diversification, and many other
measures of the tempo and mode of evolution (Huelsenbeck, Ronquist, Nielsen, &
Bollback, 2001). Uncertainty in the estimates of these parameters is handled naturally
by the Bayesian approach (Huelsenbeck et al., 2002; Holder & Lewis, 2003). The pos-
terior distribution is approximated using numerical algorithms such as Markov chain
Monte Carlo (MCMC) sampling (Yang & Rannala, 1997). The popularity of Bayesian
phylogenetic methods can be attributed to the straightforward interpretation of the pos-
terior probabilities, the ability to apply complex and mechanistic models of evolution,
and their wide availability in a number of software programs, e.g., MrBayes (Ronquist,
Teslenko, van der Mark, Ayres, Darling, Höhna, Larget, Liu, Suchard, & Huelsenbeck,
2012), BEAST (Drummond & Rambaut, 2007; Bouckaert, Heled, Kühnert, Vaughan,
Wu, Xie, Suchard, Rambaut, & Drummond, 2014), and PhyloBayes (Lartillot, Lepage,
& Blanquart, 2009).

The space of described phylogenetic models has expanded rapidly in recent years, giving
rise to a wide range of models that vary in their complexity. Simple models of sequence
evolution, for example, assume equal base frequencies and equal transition rates between
DNA characters (Jukes & Cantor, 1969). Furthermore, simple models assume that all
sites in a sequence evolve at the exact same evolutionary rate and via the same process
(Yang, 1994). Complex models, however, aim to relax these assumptions by capturing
known biological properties, like unequal evolutionary rates at different codon positions
(Shapiro, Rambaut, & Drummond, 2006). To keep up to speed with model development,
phylogenetic software has also increased in complexity. In a recent paper, we intro-
duced a new approach for phylogenetic model representation—probabilistic graphical
models (Höhna, Heath, Boussau, Landis, Ronquist, & Huelsenbeck, 2014)—to enable a
flexible and expandable phylogenetic inference platform and a mechanism for visually
representing hierarchical models of evolution. Within the probabilistic graphical model
paradigm, a statistical model is represented visually as a graph of nodes and edges de-
picting probability distributions and parameter transformations (see Fig. 6.16.1). These
model graphs lay bare the conditional dependence structure of the model. RevBayes is
a new phylogenetic inference program that harnesses the power of probabilistic graphical
models, allowing users to specify any model with any complexity and estimate poste-
rior probabilities in a Bayesian framework (Höhna, Landis, Heath, Boussau, Lartillot,
Moore, Huelsenbeck, & Ronquist, 2016). To interface with the RevBayes core, we de-
signed a new interactive model-specification language called Rev (Höhna et al., 2016),
which instantiates a graphical model in computer memory. Both graphical models and
the interactive model specification language Rev are central parts of RevBayes and are
similar in philosophy and intention to other probabilistic programming environments,
e.g., WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000) and Stan (Carpenter, Gel-
man, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, & Riddell, in press). The
complexity of the language and modeling framework of RevBayes may present initial
challenges to new users, but it is important to state that once the central concepts are ap-
preciated and understood (this is facilitated by detailed user tutorials and documentation
on http://revbayes.com), RevBayes provides a powerful platform for conducting fully
integrative Bayesian phylogenetic inference. Analysis of biological data under complex
models in a Bayesian framework will better capture statistical uncertainty in phylogenetic
parameters and enable greater understanding of the processes driving evolution.

In this unit, we provide three related protocols for performing phylogenetic analyses in
RevBayes. Basic Protocol 1 guides the user through the specification of a phylogenetic
model of molecular sequence evolution (i.e., a substitution model and a tree topology
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Figure 6.16.1 Graphical model representation of the general time reversible (GTR) substitution
model with Gamma distributed rate variation among sites and a proportion of invariant site (GTR
+ � + I). The left side shows the graphical model with the dependencies between the parameters.
The right side shows the corresponding Rev code to instantiate this model. A brief overview on
graphical models is provided in Background Information (Fig. 6.16.5). The stationary frequencies
pi are drawn from a Dirichlet prior distribution with parameter α2, and similarly the exchangeability
rates er are drawn from a Dirichlet prior distribution with parameter α1. The stationary frequencies pi
and the exchangeability rates er are transformed using the GTR function into the GTR rate matrix.
The details of the GTR rate matrix are described under Substitution Model in the Commentary.
The probability of a site being invariant p_inv is drawn from a Beta(1,1) prior distribution. The rate
variation among sites is modeled by a the per-site rates sr corresponding to a discretized Gamma
distribution with rate and shape parameters α. The parameter α is drawn from a log normal prior
distribution. Finally, the tree topology τ is drawn from a uniform topology prior distribution and each
branch length bli is drawn from an exponential distribution with mean 0.1. The tree variable � is
the union of the tree topology with branch lengths. For a more detailed discussion on probabilistic
graphical models for phylogenetics, see Höhna et al. (2014) and Höhna et al. (2016). This GTR +
� + I model is used in Basic Protocol 1 and is explained in more detail step by step.

including branch lengths), including all parameters and MCMC proposals. This procedure
is followed by a description of how to apply the MCMC algorithm to approximate the
posterior distribution of all model parameters. In Basic Protocol 2, we outline how to
construct a model for a multi-locus dataset of protein-coding genes and partition one locus
by codon position. Each partition is assumed to be generated from a different substitution
model. This second basic protocol extends the core concepts of the first basic protocol to
emphasize the generality and flexibility of RevBayes. Basic Protocol 3 gives the steps
for comparing two substitution models—the one-parameter Jukes-Cantor model (Jukes
& Cantor, 1969) and the five-parameter Hasegawa-Kishino-Yano model (Hasegawa,
Kishino, & Yano, 1985)—by estimating the marginal likelihood under each model and
comparing the support using Bayes factors.

BASIC
PROTOCOL 1

ESTIMATING PHYLOGENY (TOPOLOGY AND BRANCH LENGTHS)

Probabilistic graphical models are central to RevBayes. The probabilistic graphical
model is instantiated in computer memory, variable by variable, by executing a sequence
of commands in Rev. Rev is the programming language used by RevBayes. This
distinction separates the design of the syntax (i.e., commands) from the implementation
of the method. It is of utmost importance to think about a phylogenetic model as a
probabilistic graphical model to understand which Rev commands are required to build
the desired model.

When applying Bayesian methods, the choice of tree model (a prior on the topology
and branch lengths) and the substitution model are central to accurate phylogenetic
inference. The graphical model in Figure 6.16.1 represents the commonly used general-
time reversible substitution model with among-site rate variation (GTR+�+I; Tavaré,
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1986) with a uniform prior on tree topologies. Additionally, Figure 6.16.1 provides the
corresponding Rev commands to specify the model parameters and structure. Below, we
explain and motivate the steps to build this model and estimate the posterior probabilities
of parameters using MCMC.

The MCMC algorithm in RevBayes consists of two main components called moves and
monitors. Moves are specific tools that update one or several parameters of the model.
For example, the sliding-window move updates a single parameter by adding a normally
distributed value to the current value of the parameter (for a detailed explanation of
common moves used in phylogenetics, see Yang, 2014), while the nearest-neighbor-
interchange (NNI) move updates the tree topology by randomly switching neighboring
nodes (Höhna, Defoin-Platel, & Drummond, 2008; Höhna & Drummond, 2012). The
collection of moves allows the MCMC algorithm to fully explore parameter space. The
second main component of the MCMC algorithm are the monitors, which simply define,
among other things, the variables to be sampled (i.e., monitored), the format of the output
and destination (i.e., stored into a file), and the frequency of sampling. The flexibility of
generic monitors enables users in RevBayes to store different variables, like the tree
topology, in separate files for specific post-processing.

In this unit, we use RevBayes interactively, by executing every single line in the
terminal. RevBayes can also run an analysis from a script file (a text file) by using the
source("my_analysis.Rev") command. Running RevBayes from a script file
is preferred, because runs are more easily reproduced, and analyses can run unattended.
We provide the examples as scripts in the Supplementary Material and on our Web site:
http://revbayes.com/tutorials.html.

Necessary Resources

Hardware

Standard workstation (e.g., Macintosh, Windows, Linux, or Unix system) or
computer cluster. In principle, RevBayes runs on any modern computer
architecture. More powerful computers with many CPUs can be helpful for large
datasets. The examples described in the protocol as well as small to intermediate
datasets run sufficiently well on standard desktop computers.

Software

RevBayes is a stand-alone software application that comes with the boost and
NCL libraries included (Lewis, 2003). The source code is freely available from
https://github.com/revbayes/revbayes and can be compiled on any modern
platform using cmake and a C++ compiler (e.g., GCC 4.2 or newer).
Additionally, pre-compiled versions of RevBayes for Windows 7 and Mac OS
X 10.6 (or higher) are provided (https://revbayes.com). The analyses provided in
this protocol were written for RevBayes version 1.0.2 (commit 67426a2). We
recommend using RevBayes v1.0.2 or higher for any analyses based on the
exercises described below.

Files

RevBayes recognizes any standard file format for molecular sequence data files
with aligned DNA sequences, e.g., NEXUS, PHYLIP, and FASTA. All data files
and analysis scripts are available for download from our Web site:
http://revbayes.com/tutorials.html. For the analyses outlined in this protocol, we
will estimate the phylogeny of 23 primate taxa using an alignment of
cytochrome b sequences in the file labeled primates_cytb.nex.

Getting started

1. Start RevBayes:
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rb

In Unix systems, open a terminal window and type rb in the command line. You should
make sure that the RevBayes executable is in your path variable so that you can
start RevBayes from any directory. The directory from which you start RevBayes is
important in order to use relative file paths for reading in data. On Windows systems, you
can either double click the RevBayes executable or open the command-line window
and type rb.exe.

2. Load the data into your workspace:

data <- readDiscreteCharacterData("data/primates_
cytb.nex")

RevBayes reads in standard NEXUS, FASTA, and Phylip formatted files [see UNIT 6.3

(Desper & Gascuel, 2006) and UNIT 6.4 (Wilgenbusch & Swofford, 2003) for descriptions
of these file formats]. Here we read in the cytochrome b (cyt-b) sequence data from
a file called primates_cytb.nex and store the data in a variable named data.
The sequence alignment file is stored in the data directory, which should be within the
directory from which you started RevBayes. Alternatively, you can provide the full path
to read in a file from a different directory. If you want to know the current directory in
which RevBayes is running, then you can query this information by typing getwd()
into the console window.

3. Query necessary information about the taxa from the data:

n_species <- data.ntaxa()
n_branches <- 2 * n_species - 3
taxa <- data.taxa()

In step 11 of this protocol, we need to know the number of branches in the tree so that
we can create the desired number of branch length variables. We obtain the necessary
information from the data variable created above using the member method .ntaxa()
(which returns the number of taxa) and .taxa() (which returns a vector of taxa, i.e., the
names of the species). To list the member methods a variable provides, use the member
method .methods(), which is available for every variable, e.g., data.methods().

4. Instantiate helper variables:

mvi = 0
mni = 0

In RevBayes, you must create the moves and monitors manually and store them in a
vector. Moves are algorithms used to propose new parameter values during the MCMC
simulation, and monitors are simple functions that print a subset of variables either to
the screen or to a file [also see the section on Markov Chain Monte Carlo (MCMC)
Simulation, below]. For convenience, we will create two counter variables that tell us
how many moves and monitors we have already created. These counter variables can
then be used to add a new move or monitor at the end of the corresponding vectors.

Substitution model

5. Create the stationary frequency parameters:

alpha2 <- v(1,1,1,1)
pi � dnDirichlet(alpha2)

The first parameter of our model is the vector of the stationary frequencies pi. Every
parameter in a Bayesian analysis must have a prior distribution. Prior distributions are
required because we are interested in the posterior distribution of the parameters, where
the posterior distribution is obtained by calculating the product of the prior distribution
and the likelihood function. The stationary frequencies are a vector of probabilities that
sum to one. Such a vector is also called a ‘simplex’. The Dirichlet distribution is a natural
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choice for the prior distribution because the Dirichlet distribution assigns probability
densities to a group of parameters that measure proportions and must sum to one. Here,
we have specified a four-parameter Dirichlet prior, where each value describes one of the
four stationary frequencies of the GTR model. Without strong prior knowledge about the
pattern of stationary frequencies, however, we can better reflect our uncertainty by using
a vague prior. Notably, all patterns of stationary frequencies have the same probability
density under alpha2 <- v(1,1,1,1). Note, that we could also fix the stationary
frequencies to a constant/fixed parameter by declaring a constant variable for pi; pi
<- simplex(1,1,1,1).

moves[++mvi] = mvBetaSimplex(pi, weight=2.0)
moves[++mvi] = mvDirichletSimplex(pi, weight=1.0)

We need to select moves that propose new values of the stationary frequencies during
the MCMC simulation because the stationary frequencies of the GTR substitution model
are parameters that we want to estimate, i.e., stochastic variables. Here we choose
two moves: the mvBetaSimplex, which updates only a single element (one of the
stationary frequencies), and the mvDirichletSimplex, which proposes new values
drawn from a Dirichlet distribution centered around the current values. Both moves
rescale the stationary frequencies after the proposal so that the values always sum to
1. The first move receives a weight of 2.0 and the second move a weight of 1.0, which
implies that the first move will be applied on average 2.0 times per MCMC iteration and
the second 1.0 times per iteration (also see the section on Markov Chain Monte Carlo
(MCMC) below). We add each move to our vector of moves and automatically increment
the counter variable mvi using the pre-increment operator ++mvi.

6. Create the exchangeability rate parameters:

alpha1 <- v(1,1,1,1,1,1)
er � dnDirichlet(alpha1)

Next, we create a stochastic variable for the exchangeability parameters of the GTR
substitution model. In RevBayes we have adopted the convention that exchangeability
rates sum to 1, i.e., the exchangeability rates are normalized. This convention ensures
that the model is identifiable and yields branch lengths in expected number of substitu-
tions. Hence, we can apply a Dirichlet prior distribution to the exchangeability rates.
Representing our lack of prior information about the exchangeability rates, we use a flat
Dirichlet prior distribution: alpha1 <- v(1,1,1,1,1,1).

moves[++mvi] = mvBetaSimplex(er, weight=3.0)
moves[++mvi] = mvDirichletSimplex(er, weight=1.5)

We need to specify moves for the exchangeability rates as we did for the stationary
frequencies. Since the exchangeability rates are also of type simplex and drawn from a
Dirichlet distribution, we can use the same type of moves as before.

7. Combine exchangeability rates and stationary frequencies into the substitution rate
matrix:

Q:= fnGTR(er,pi)

Given the exchangeability rates and stationary frequencies, we can deterministically
compute the instantaneous substitution rate matrix. We show the relationship of the
parameters and the transformation into the rate matrix in the section titled Phylogenetic
Models and Theory in the Commentary, below. In RevBayes, we use the function
fnGTR given the parameters er and pi to instantiate the deterministic variable Q. The
dependencies of the substitution rate matrix Q and its parameters er and pi is shown
using dashed arrows in Figure 6.16.1.

8. Model among site rate variation (ASRV):

alpha_prior_mean <- ln(1.5)
alpha_prior_sd <- 0.587405
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alpha � dnLognormal(alpha_prior_mean, alpha_prior_sd)
sr:= fnDiscretizeGamma(shape=alpha, rate=alpha,
numCats=4, median=FALSE)
To specify the discrete Gamma ASRV model, we need a deterministic node that is
a vector of k rates drawn from a Gamma distribution with k rate categories. The
fnDiscretizeGamma function returns this deterministic node and takes four
arguments: the shape and rate of the Gamma distribution, the number of categories,
and whether to use the mean or median of the quantiles. Since we want to discretize
a mean-one Gamma distribution, we can pass in alpha for both the shape and rate.
alpha itself is a stochastic variable drawn from a log normal prior distribution
with location parameter ln(1.5) and scale of 0.587405. Thus, our resulting
95% prior interval ranges from a vector of site rates of [0.029, 0.235, 0.801, 2.936]
to [0.491, 0.798, 1.084, 1.628], representing either a 100-fold difference in rates or
a 3-fold difference in rates. This specific prior shows an example of a biologically
motivated prior. Note that here, by convention, we set k = 4 using the argument
numCats=4 (Yang, 1994). Particular to RevBayes is that the number of rate
categories k and the distribution of the rate categories can be exchanged easily, for
example, by using a log normal distribution with 6 rate categories instead (sr:=
fnDiscretizeDistribution(dnLognormal(mean=0, sd=alpha),
num_cats=6)).

moves[++mvi] = mvScale(alpha, lambda=1.0, weight=2.0)
The random variable that controls the rate variation is the stochastic node alpha. We
apply a simple scale move to this parameter (for details also see Yang, 2014). The scale
move proposes new parameter values by multiplying the current value by a factor eλu,
where u is drawn uniformly from (−0.5, 0.5). Here, λ is a tuning parameter that controls
the range of proposed scaling factors. For example, if λ =1.0, then the current value is
scaled by a factor between e−0.5 and e0.5, and if λ =2.0, then the scaling factor is between
e−1 and e1. Tuning parameters can be set manually or tuned automatically to achieve
“optimal” performance (Haario, Saksman, & Tamminen, 1999; Roberts & Rosenthal,
2009).

9. Model probability of invariable sites:

p_inv � dnBeta(1,1)

This adds a stochastic variable for the probability of a site being invariant, p_inv,
to the parameter for rate variation among sites. Since p_inv should be defined as a
probability (any number between 0 and 1), we choose a Beta(1,1) distribution as the
prior. This flat Beta distribution gives equal probability to any value between 0 and 1.

moves[++mvi] = mvBetaProbability(p_inv, weight=2.0)
For the p_inv variable, we apply a Beta-Probability move which is applicable to
stochastic variables of type Probability and uses a Beta distribution to propose new
values. We could also have used (additionally) a scaling move (mvScale) or sliding
move (mvSlide) as for any other continuous variable (Yang, 2014).

Tree topology and branch lengths

In the previous steps, we specified the substitution model with its parameters. The
substitution model is necessary to compute the likelihood of a phylogeny given the data.
Now, we specify our main variable of interest: the phylogeny. The phylogeny variable
comprises the tree topology and the branch lengths. We will first specify the topology
and branch length variables independently, then merge the parameters together to create
a phylogeny variable.

10. Specify a uniform prior distribution on the tree topology:

out_group = clade("Galeopterus_variegatus")
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topology � dnUniformTopology(taxa, outgroup=
out_group)

In this protocol, we will estimate an unrooted phylogeny. We first specify a uniform
distribution on all topologies that have this set of taxa and our outgroup. Hence, every
topology has the same prior probability of one over the number of distinct topologies
(for computing the number of topologies, see Felsenstein, 1978). Note that the prior
probability can become very small because the number of topologies is growing super-
exponentially with the number of taxa, but this is no concern for Bayesian phylogenetics
because all topologies are equally probable a priori. For this dataset, the outgroup is a
single species: the flying lemur (Galeopterus variegatus). However, RevBayes allows
you to specify any number of outgroup species. Other software, such as MrBayes,
implicitly assume that the first entry in the data file is the outgroup species. InRevBayes,
we force users to select the outgroup manually to make all decisions conscious and visible.
Since the trees sampled by MCMC are actually all unrooted, they can also be re-rooted
after the analysis even if no outgroup is specified (see UNIT 6.1; Page, 2003).

moves[++mvi] = mvNNI(topology, weight=5.0)
moves[++mvi] = mvSPR(topology, weight=3.0)

We apply two moves on the tree topology: a nearest neighbor interchange move (mvNNI)
and a subtree-prune-regraft move (mvSPR). These two moves change only the tree
topology. The tree topology is often the most difficult parameter to estimate (mix over).
Therefore, more specialized moves that propose new topologies (and branch lengths)
using more sophisticated methods are available in RevBayes. For a discussion, see
Höhna et al. (2008); Lakner, van der Mark, Huelsenbeck, Larget, & Ronquist (2008);
Höhna & Drummond (2012); Yang (2014).

11. Specify an exponential branch length prior:

for (i in 1:n_branches) {
bl[i] � dnExponential(10.0)
moves[++mvi] = mvScale(bl[i])

}
TL:= sum(bl)

Every branch length is represented in this model as its own independent and identically
distributed stochastic variable. This is achieved by using a for loop. The for loop
corresponds to the repetition of the variable bl (shown as a dashed box in Fig. 6.16.1;
also see Fig. 6.16.2) around the bl variable in Figure 6.16.1. In the for loop, we
create each branch length variable drawn from an exponential distribution with rate 10.
Remember that an exponential distribution with rate 10 has an expectation of one divided
by the rate (1/10). Additionally, we compute the total tree length by summing all branch
lengths, which is done in the deterministic variable TL. The tree length is not a variable
of the model itself, but we might want to monitor it to, for example, learn about the
posterior distribution of the tree length itself instead of only the single branch lengths.
Even though the exponential branch length prior is the most common choice, it has been
shown to bias tree inference (e.g., Yang & Rannala, 2005; Brown, Hedtke, Lemmon, &
Lemmon, 2010; Rannala, Zhu, & Yang, 2012). Alternatively, we could have specified a
prior distribution on the tree length, such as a Gamma prior, and a distribution on the
relative branch length using a Dirichlet distribution (Zhang, Rannala, & Yang, 2012).
Then, the actual branch length is the product of the relative branch length and the tree
prior.

psi:= treeAssembly(topology, bl)

Finally, we combine the tree topology variable (topology) and branch lengths (bl)
into a tree variable with branch lengths. The separation between tree topology and branch
lengths allows us more flexibility in specifying prior distributions on each.Phylogenetic
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Figure 6.16.2 Graphical model variables and Rev code. This figure was modified from Figure 1 of
Höhna et al. (2016). Parent-child relationships between model variables are given on the left-hand
side. Corresponding Rev code is given on the right hand side. (A) The variable r is a constant
node (<-) with the value 10. (B) The variable l is a stochastic node (�) that is exponentially
distributed with rate r=10; whenever the value of r changes, so does the probability of 1. (C)
The variable l is observed to have the value 0.1 and now contributes to the model likelihood
rather than the model prior; the likelihood is p(x = 0.1 | λ = 10) = 0.3678794 under an exponential
distribution. (D) The variable l is a deterministic node (:=) whose value always equals l = er;
whenever r changes, the value of l is updated immediately. For r = 10, l = e10 = 22026.47. (E)
Each element l [i] in the vector of variables l is independently and identically distributed under
an Exponential distribution, dnExp(r).

Putting it all together

12. Model character evolution along the phylogeny:

seq � dnPhyloCTMC(tree=psi, Q=Q, siteRates=sr,
pInv=p_inv, type="DNA")
We have fully specified all of the parameters of our phylogenetic model—the tree topol-
ogy with branch lengths, and the substitution model that describes how the sequence
data evolved over the tree with branch lengths. Collectively, these parameters comprise
a distribution called the ‘phylogenetic continuous-time Markov chain’, and we use the
dnPhyloCTMC distribution to create a stochastic variable seq for the sequence data.
This distribution requires several input arguments (arguments marked with * are op-
tional): (1) the tree with branch lengths psi; (2) the instantaneous-rate matrix Q; (*3)
the rate categories for the site-specific rates sr; (*4) the probability of a site being
invariant p_inv; (*5) the clock rate that scales all branch lengths, which is not part of
this model; and (6) the type of character data “DNA”.

13. Attach the data to the sequence variable:

seq.clamp(data)

Although we assume that our sequence data are random variables—they are realizations
of our phylogenetic model—for the purposes of inference, we assume that the sequence
data are ‘clamped’. When this function is called, RevBayes sets each of the stochastic
nodes representing the tips of the tree to the corresponding nucleotide sequence in the
alignment. This essentially tells the program that we have observed data for the sequences
at the tips.
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14. Instantiate a model object:

mymodel = model(Q)

Finally, we wrap the entire model to provide convenient access to the model graph. To do
this, we only need to give the model function a single node. With this node, the model
function can find all of the other nodes by following the arrows in the graphical model.
The variable mymodel now holds its own independent copy of the entire model graph
in computer memory.

Performing an MCMC analysis

15. Add monitors to store samples from the MCMC simulation into files:

monitors[++mni] = mnModel(filename="output/primates_
cytb.log", printgen=10, separator=TAB)

monitors[++mni] = mnFile(filename="output/primates_
cytb.trees", printgen=10, separator=TAB, psi)

monitors[++mni] = mnScreen(printgen=1000, TL)

For our MCMC analysis, we need to set up a vector of monitors to record the states of
our Markov chain. The monitor functions are all called mn*, where * is the wildcard
representing the monitor type. First, we will initialize the model monitor using the
mnModel function. This creates a new monitor object that will output the states for all
simple, numeric model parameters (i.e., not the tree and the rate matrix) when passed into
a MCMC function. The mnFile monitor will record the states for only the parameters
passed in as arguments. We use this monitor to specify the output for our sampled trees
and branch lengths: psi. Finally, the screen monitor will report the states of specified
variables to the screen with mnScreen. The screen monitor is just for our convenience,
to see what is happening. All monitors have an argument called printgen that specifies
how frequently samples are stored (i.e., thinning of the samples). Thinning is important
to reduce file size and maximize the ratio of effective sample size (ESS) to the number of
samples taken.

16. Run an MCMC simulation:

mymcmc = mcmc(mymodel, monitors, moves)

mymcmc.burnin(generations=10000,tuningInterval=200)
mymcmc.run(generations=30000)

With a fully specified model, a set of monitors, and a set of moves, we can now set
up the MCMC algorithm that will sample parameter values in proportion to their pos-
terior probability. The mcmc function will create our MCMC object. We may wish to
run the .burnin() member function. Recall that this function does not specify the
number of states that we wish to discard from the MCMC analysis as burnin (i.e., the
samples collected before the chain converges to the stationary distribution). Instead, the
.burnin() function specifies a completely separate preliminary MCMC simulation
that is used to auto-tune the moves to improve mixing of the MCMC analysis. Addi-
tionally, the .burnin() function will move the parameters towards the stationary
distribution and thus fewer, if any, samples from the actual MCMC simulation have to be
discarded. When the analysis is complete, you will have the monitored files in your output
directory. See the section titled Guidelines for Understanding Results for information on
evaluating and summarizing MCMC output.

BASIC
PROTOCOL 2

PARTITIONED DATA ANALYSIS

This is an introduction to partitioned phylogenetic analysis. Partitioned analyses allow
for different sets of homologous sites to evolve according to different sets of evolutionary
parameters—for example, if two genes with different functions face different selection
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Figure 6.16.3 Graphical model representation of the partitioned general time reversible (GTR)
substitution model with Gamma distributed rate variation among sites and a proportion of invariant
site (GTR + � + I). Note that all substitution process parameters are replicated by the plate, but
there is one common tree parameter shared across subsets of characters in the partition. The left
side shows the graphical model with the dependencies between the parameters. The right side
shows the corresponding Rev code to instantiate this model. For a more detailed discussion on
probabilistic graphical models for phylogenetics, see Höhna et al. (2014) and Höhna et al. (2016).
In contrast to Figure 6.16.1, the model graph shown here instantiates many of its prior distributions
directly with unnamed parameter values rather than with named model variables. This leads to
more compact code. For example, pi is assigned a Dirichlet prior with concentration parameters
v(1,1,1,1) rather than creating a new alpha2 variable. In the model graph, the anonymous
vector v(1,1,1,1) appears as a plate of four constant nodes, each with value 1. Importantly,
using named or unnamed variables is a notational difference that does not affect the performance
of the model itself.

pressures, and they may evolve according to different processes. Within a single protein-
coding gene, the third codon position is expected to have a relatively high rate of
substitution when compared with first and second codon positions, owing to the structure
of the genetic code (Bull, Huelsenbeck, Cunningham, Swofford, & Waddell, 1993;
Brandley, Schmitz, & Reeder, 2005; Brown & Lemmon, 2007).

This protocol describes how to perform a partitioned data analysis using RevBayes.
A key idea underlying this section is plate notation (Fig. 6.16.3). In a graphical model,
a plate represents a set of random variables and their dependencies that are replicated
with identical structure and visually represented as a dashed rectangle encompassing
the replicated variable nodes. This has a natural correspondence to the for loop in
programming languages. In both cases, this helps to keep the model concise and easy
to modify. For practical purposes, by instantiating the distribution of branch lengths
as a “repetition of variables” in Basic Protocol 1, this creates a plate of branch length
variables. Plates are common structures in phylogenetic models, but here we focus on
their application to multi-locus partitioned analyses.

In this example, we will consider a partition with four subsets of characters: first and
second codon positions for cyt-b, third codon positions for cyt-b, first and second codon
positions for COX2 (cytochrome c oxidase subunit 2), and third codon positions for
COX2. Each character subset will evolve under its own substitution process, each of which
being similar to the single-locus model in Basic Protocol 1. Unlike the substitution process
parameters, all character subsets in the partition share a single phylogeny parameter.

Necessary Resources

All of the necessary resources for this tutorial are described above in Basic
Protocol 1. All data files and analysis scripts are available for download from
our Web site, http://revbayes.com/tutorials.html. For this protocol, we will use a
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second dataset in addition to the cytochrome b alignment analyzed in Basic
Protocol 1. This dataset contains 23 primate sequences for the gene cytochrome
oxidase II in the file called primates_cox2.nex.

Getting started

1. Start RevBayes:

rb

In Unix systems, open a terminal window and type rb in the command line. On Windows
systems, you can either double click theRevBayes executable or open the command-line
window and type rb.exe.

2. Load the two alignments from file:

data_cytb <- readDiscreteCharacterData
("data/primates_cytb.nex")

data_cox2 <- readDiscreteCharacterData
("data/primates_cox2.nex")

We read in the sequence data from the files primates_cytb.nex and pri-
mates_cox2.nex and store them in the variables named data_cytb and
data_cox2. See step 2 of Basic Protocol 1 for more information about these com-
mands.

3. Divide the data into partitions:

data[1] <- data_cox2
data[2] <- data_cox2
data[3] <- data_cytb
data[4] <- data_cytb

First, we store two copies of each gene into a vector. Elements data[1] and data[2]
correspond to cyt-b, while data[3] and data[4] correspond to cox2.

data[1].setCodonPartition(v(1,2))

data[2].setCodonPartition(3)

data[3].setCodonPartition(v(1,2))

data[4].setCodonPartition(3)

Then, we assign partitions to differentiate third codon positions from first and second
codon positions for cyt-b and COX2.

4. Record the dimensions of the dataset:

n_species <- data_cytb.ntaxa()

n_branches <- 2 * n_species - 3

taxa <- data[1].taxa()

n_data_subsets <- data.size()

In the latter part of this protocol, we need to know the number of branches in the tree
and the number of data subsets in the partition to design the structure of the model. See
step 3 of Basic Protocol 1 for more information about these commands.

5. Instantiate helper variables:Phylogenetic
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mvi = 0

mni = 0

In RevBayes you create the moves and monitors manually and store them in a vector.
For convenience, we will create two counter variables that tell us how many moves and
monitors we have already created. These counter variables can then be used to add a
new move or monitor add the end of vectors. See step 4 of Basic Protocol 1 for more
information about these commands.

Substitution model

6. Declare a for loop over data subsets:

for (i in 1:n_data_subsets)

We use a for loop to assign individual substitution model parameters to each data
subset in the partition. The contained code will be executed once for each of the four
data subsets. From the graphical modeling perspective, the for loop behaves like plate
representation, where each data subset is drawn from a common model structure. Each
iteration of the loop essentially creates an independent copy of the model defined in Basic
Protocol 1.

7. Begin defining the code block for the for loop to execute:

{

All code contained between the open curly brace ({) and the matching closed curly brace
(}) will be executed once for each value of i between 1 and n_data_subsets times
(this for loop is closed in step 13, below). Here, we will create stationary frequencies,
exchangeability rates, rate matrices, among-site rate variation multipliers, and invariable
site parameters for each of the four character subsets in our partition. Building upon
Basic Protocol 1, we are now specifying the model with vectors of parameters, where
each element in the vector is associated with a block of characters. For example, er will
no longer correspond to the simplex of exchangeability rates for the entire analysis, but
rather a vector of four simplices of exchangeability rates for the partitioned analysis,
accessed by er[1], er[2], er[3], and er[4]. The following code block is indented
to emphasize that it will be executed within a loop.

8. Create the ith stationary frequency parameters:

pi[i] � dnDirichlet(alpha=[1,1,1,1])
moves[++mvi] = mvBetaSimplex(pi[i], weight=2.0)
moves[++mvi] = mvDirichletSimplex(pi[i], weight=2.0)

Each data subset has its own set of stationary frequencies, each of which has a flat
Dirichlet prior distribution. Two MCMC moves are assigned to update the parameter.
mvBetaSimplex updates one simplex value at a time, whereas mvDirichletSim-
plex updates all simplex values simultaneously. See step 5 of Basic Protocol 1 for more
information about these commands.

9. Create the ith exchangeability rate parameters:

er[i] � dnDirichlet(alpha=[1,1,1,1,1,1])
moves[++mvi] = mvBetaSimplex(er[i], weight=3.0)
moves[++mvi] = mvDirichletSimplex(er[i], weight=1.5)

Each data subset has its own set of exchangeability rates, each of which has a flat
Dirichlet prior distribution. See step 6 of Basic Protocol 1 for more information about
these commands. Inferring
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10. Create the ith rate matrix from the stationary frequencies and exchangeability rate
parameters:

Q[i]:= fnGTR(er[i], pi[i])

Each character subset evolves according to its own GTR rate matrix. Each rate matrix
is a function of exchangeability rates and stationary frequencies associated with that
particular character subset in the partition. If the value of er[1] or pi[1] changes, it
will only cause the value of Q[1] to change; the values of Q[2], Q[3], and Q[4] will
remain the same because they are not child nodes of er[1] or pi[1]. See step 7 of
Basic Protocol 1 for more information about these commands.

11. Create the ith discrete Gamma distribution to model among site rate variation
(ASRV):

alpha[i] � dnLognormal(mean=ln(1.5), sd=0.587405)
sr[i]:= fnDiscretizeGamma(alpha[i], alpha[i], 4,
false)

moves[++mvi] = mvScale(alpha[i], lambda=1.0,
weight=2.0)
We create a discrete Gamma distribution to model among site rate variation, which takes
alpha[i] as a shape and rate parameter. alpha[i] is log-normally distributed;
unlike Basic Protocol 1, we set the mean and sd parameters directly rather than creating
two constant nodes only to pass those constant nodes as arguments. See step 8 of Basic
Protocol 1 for more information about these commands.

12. Create the ith invariable sites parameter:

p_inv[i] � dnBeta(alpha=1, beta=1)
moves[++mvi] = mvBetaProbability(p_inv[i],
weight=2.0)
The proportion of invariable sites is free to vary across subsets in the partition. Each
parameter, p_inv[i], has a flat distribution, dnBeta(alpha=1,beta=1), and
an MCMC move to sample posterior values. See step 9 of Basic Protocol 1 for more
information about these commands.

13. Complete the definition of the for loop code block:

}

This completes the for loop that was initialized in step 6 above. The contents of the code
block will be executed once for each of the four character subsets.

Tree topology and branch lengths

14. Create the tree topology variable:

out_group = clade("Galeopterus_variegatus")

topology � dnUniformTopology(taxa, outgroup=out_group)
The model will assume that all sites in the mitochondrial genome share a single gene
tree. First, we assign a uniform prior distribution over all possible topologies that could
explain the evolutionary relationships shared by taxa with flying lemur set to be the
outgroup.

moves[++mvi] = mvNNI(topology, weight=5.0)
moves[++mvi] = mvSPR(topology, weight=3.0)Phylogenetic
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Then, we add two moves to inform MCMC how to explore the space of possible tree
topologies: nearest neighbor interchange (mvNNI) and subtree-prune-regraft (mvSPR).
See step 10 of Basic Protocol 1 for more information about these commands.

15. Create branch length parameters for the tree:

for (i in 1:n_branches) {
bl[i] � dnExponential(10.0)
moves[++mvi] = mvScale(bl[i])

}
sum_br_lens:= sum(bl)

Next, we assign a prior distribution over the expected number of substitutions per site
per branch. For each branch, bl[i], we create an exponentially distributed stochastic
node and create a scale move (mvScale) to enable MCMC to mix over the posterior
distribution of branch lengths. We also monitor the tree length by creating a deterministic
node, sum_br_lens, whose value always equals sum(bl). See step 11 of Basic
Protocol 1 for more information about these commands.

16. Per-subset tree and tree length:

psi:= treeAssembly(topology, bl)

We instantiate non-clock tree, psi, whose value is determined by the function tree-
Assembly by mapping the vector of branch lengths, bl onto the topology variable,
topology.

17. Per-subset scaling factor:

for (i in 1:n_data_subsets) {
if (i == 1) {
part_rates[1] <- 1.0

} else {
part_rates[i] � dnGamma(2,2)
moves[++mvi] = mvScale(part_rates[i])

}
TL[i]:= sum_br_lens * part_rates[i]
}

We assume that each subset of characters evolves according to its own substitution
process, and thus its own substitution rate. The relative difference in rates can be treated
as a multiplicative factor. We choose the first subset to have a multiplicative factor
of 1 and for the remaining subsets evolve at some rate relative to the first subset. If
we choose the prior distribution for the remaining factors to have a mean of one, the
expected prior distribution over relative rates will favor equal rates across the partition.
If the data support differential substitution rates, however, we expect to see the values of
part_rates to deviate from 1.

To accomplish this, we construct a for loop over the four subsets and assign the
constant rate multiplier of 1.0 to the first element and the stochastic rate multiplier
dnGamma(2,2) to all other elements. The valuepart_rates[i]will later be passed
into the phylogenetic substitution process, dnPhyloCTMC, via the branchRates
argument.

Putting it all together

18. Model character evolution along the phylogeny:

for (i in 1:n_data_subsets) {
Inferring
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seq[i] � dnPhyloCTMC(tree=psi, Q=Q[i],
branchRates=part_rates[i], siteRates=sr[i],
pInv=p_inv[i], type="DNA")

seq[i].clamp(data[i])
}

Each subset of data in the partitioned analysis evolved according an independent phylo-
genetic substitution process. When declaring the relationship between the sequence data
and their underlying distribution, it is important to recall the model assumptions for this
exercise. All data subsets have independent substitution process parameters but share
a common phylogeny (topology and branch lengths). Note that tree=psi is the only
parameter that does not correspond to an element in a vector (e.g., Q[i], p_inv[i]).
After creating each seq[i] variable, we want to condition on the partitioned multiple
sequence alignments we input earlier in the protocol. Just as with the single-locus analy-
sis in Basic Protocol 1, we call seq[i].clamp(data[i]) to inform the model that
seq[i] has observed the outcome data[i] of the evolutionary process defined by
dnPhyloCTMC(..) in the previous line. See steps 12 and 13 of Basic Protocol 1 for
more information about these commands.

19. Instantiate a model object:

mymodel = model(Q)

The full graph of the model parameters is now specified. Calling the model function
wraps all the variables in the graph and provides an interface between the graphical
model and analysis objects, such as Mcmc. See step 14 of Basic Protocol 1 for more
information about these commands.

Performing an MCMC analysis

20. Add monitors to store samples from the MCMC simulation into files:

monitors[++mni] = mnModel(filename="output/primates_
partition.log", printgen=10, separator = TAB)

monitors[++mni] = mnFile(filename="output/primates_
partition.trees", printgen=10, separator = TAB, psi)

monitors[++mni] = mnScreen(printgen=1000, TL)

We create three monitors: a model monitor to record the sampled parameter values to file,
a file monitor to record the sampled phylogenies to file, and a screen monitor to report
the tree length values to the screen. See step 15 of Basic Protocol 1 for more information
about these commands.

21. Run a MCMC simulation:

mymcmc = mcmc(mymodel, monitors, moves)
mymcmc.burnin(generations=10000,tuningInterval=200)
mymcmc.run(generations=30000)

Calling mcmc(mymodel, monitors, moves) creates the Mcmc analysis object.
During burn-in, we tune the efficiency of the MCMC proposals found in moves for
10000 generations but do not record the MCMC state. After burn-in, we run the MCMC
for 30000 generations, updating the state according to the tuned moves vector and
recording the state according to the monitors vector. See step 16 of Basic Protocol 1
for more information about these commands.
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BASIC
PROTOCOL 3

MODEL COMPARISON USING BAYES FACTORS

For most datasets of molecular sequence alignments, several (possibly many) substitution
models of varying complexity are plausible a priori. As a result, we need an objective
way to compare different models and quantify the evidence in favor of each one so that
we may choose the best model for our data. Choosing the wrong model can have a
severe impact on the inferred phylogenetic tree (Posada & Crandall, 2001). In Bayesian
statistics, model selection is based on Bayes factors (Jeffreys, 1961; Kass & Raftery,
1995), which provides a method for hypothesis testing and evaluating the support for a
given model (for more detailed information on Bayes factors, please see the Bayesian
Model Selection section in the Commentary below).

This protocol will describe the steps for comparing two models in RevBayes. Specif-
ically, we will investigate the evidence in favor of a Jukes-Cantor (Jukes & Cantor,
1969) substitution model relative to the evidence supporting the Hasegawa-Kishino-
Yano (Hasegawa et al., 1985) model of sequence evolution for the primate cytochrome
b alignment. Computing the Bayes factor requires that one first calculate the marginal
likelihood of each candidate model. We demonstrate two approaches, stepping-stone
sampling and path sampling, to estimating marginal likelihoods that have been applied
in phylogenetics (Lartillot and Philippe, 2006; Fan, Wu, Chen, Kuo, & Lewis, 2011; Xie,
Lewis, Fan, Kuo, & Chen, 2011; Baele, Li, Drummond, Suchard, & Lemey, 2013).

Both stepping-stone sampling and path sampling rely on power posteriors to compute
the marginal likelihood of a model (Baele et al., 2013). Power posterior analyses are
similar to standard MCMC analyses of the posterior distribution, with the difference that
for a power posterior distribution the posterior distribution in an MCMC simulation is
raised to a power β. All other components of the model and the MCMC algorithm remain
unchanged. In practice, one has to run an MCMC simulation for many values of β =
[0,1], commonly between 30 and 200 different values. Each analysis is considered as a
stepping-stone or element of a path from the prior to the posterior. Finally, the marginal
likelihood is computed by the stepping-stone and path-sampling formulae, which are
both different estimators of the same marginal likelihood using the same power posterior
analyses.

Note that in this third protocol, we use simplified models of molecular evolution (e.g.,
removed the ASRV component of the model) to avoid complexity and to demonstrate the
modularity of the graphical-model framework. The key aspect of this protocol is to show
a simple, flexible, and generic approach to estimating marginal likelihoods and selecting
among any set of models in RevBayes.

Necessary Resources

All of the necessary resources for this tutorial are described above in Basic
Protocol 1. All data files and analysis scripts are available for download from the
RevBayes Web site http://revbayes.com/tutorials. html.

Getting started

1. Start RevBayes:

rb

See step 1 of Basic Protocol 1 for more information about executing RevBayes.

2. Load the sequence data from file:

data <- readDiscreteCharacterData("data/primates_
cytb.nex")
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This protocol will describe a simple procedure for comparing the substitution model for
one dataset. Therefore, only one alignment is loaded (see step 2 of Basic Protocol 1 for
more information about this command).

3. Create the dataset-dimension and helper variables:

n_species <- data.ntaxa()

n_branches <- 2 * n_species - 3

taxa <- data.taxa()

n_data_subsets <- data.size()

mvi = 0

mni = 0

See steps 3 and 4 of Basic Protocol 1 for more information about these commands.

The Jukes-Cantor model

4. Create the constant node representing the rate matrix under the Jukes-Cantor (JC)
substitution model (Jukes and Cantor, 1969):

Q <- fnJC(4)

The fnJC function creates a Q-matrix where the rate of change between every state is
equal. This function takes the number of states, e.g., 4 for nucleotides, as an argument.
Importantly, one can use this function to create a rate matrix for characters with k states
and equal rates of change between all states. Note that because the rates of change
between states are fixed (all equaling 1), this makes the Q-matrix a constant node and
no moves are defined for the parameters of the Jukes-Cantor model.

Tree topology and branch lengths

5. Specify the prior distribution on the tree topology:

out_group = clade("Galeopterus_variegatus")
topology � dnUniformTopology(taxa, outgroup=out_group)
moves[++mvi] = mvNNI(topology, weight=5.0)
moves[++mvi] = mvSPR(topology, weight=3.0)

See step 10 of Basic Protocol 1 for more information about these commands.

6. Define the branch length priors and assemble the tree:

for (i in 1:n_branches) {
bl[i] � dnExponential(10.0)
moves[++mvi] = mvScale(bl[i])

}
TL:= sum(bl)
psi:= treeAssembly(topology, bl)

See step 11 of Basic Protocol 1 for more information about these commands.

Putting it all together

7. Specify the model of character evolution along the phylogeny and attach the observed
sequence data:

seq � dnPhyloCTMC(tree=psi, Q=Q, type="DNA")
seq.clamp(data)
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See steps 12 and 13 of Basic Protocol 1 for more information about these commands.

8. Create the model object:

mymodel = model(Q)

See step 14 of Basic Protocol 1 for more information about these commands.

Compute power posterior distributions

9. Add the monitors to write MCMC samples to file and to the screen:

monitors[++mni] = mnModel(filename="output/
primates_cytb_JC.log", printgen=10,separator=TAB)

monitors[++mni] = mnFile(filename="output/
primates_cytb_JC.trees", printgen=10,separator=TAB,
psi)

monitors[++mni] = mnScreen(printgen=1000, TL)

This creates files to store the MCMC samples of the model parameters. However, it is
important to note that the sampler (specified below) for this analysis is not the same as
in the first two protocols. Because we are sampling from power posteriors, the MCMC
samples are not valid samples from the true target distribution. Thus, the samples in these
files are best for troubleshooting the power-posterior run. See step 15 of Basic Protocol
1 for more information about these commands.

10. Run MCMC under a series of power posteriors:

mypowerp = powerPosterior(mymodel, moves, monitors,
"output/powerp_JC.out", cats=127, sampleFreq=10)

mypowerp.burnin(generations=10000, tuningInterval
=200)

mypowerp.run(generations=10000)
To estimate the marginal likelihood of a given model, we must first run the MCMC
under a series of power posteriors. This essentially raises the posterior probability to a
power between 1 and 0 in an iterative manner. This method computes a vector of powers
from a beta distribution, then executes an MCMC run for each power step while raising
the likelihood to that power. In this implementation, the vector of powers starts with 1,
sampling the likelihood close to the posterior and incrementally sampling closer and
closer to the prior as the power decreases. With the power-posterior samples saved to
file, we can use stepping-stone sampling (Xie et al., 2011) or path sampling (Lartillot &
Philippe, 2006) to estimate the marginal likelihood under this model (see steps 22 to 25,
below).

Evaluate a second model

11. Clear the workspace of the previously defined model (JC model):

clear()

Unless RevBayes has been restarted, the workspace must be cleared of the previous
model.

12. Re-load the data from file, and instantiate the helper variables:

data <- readDiscreteCharacterData("data/primates_
cytb.nex")

n_species <- data.ntaxa()
n_branches <- 2 * n_species - 3
taxa <- data.taxa()
n_data_subsets <- data.size()
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mvi = 0
mni = 0

See steps 2 to 4 of Basic Protocol 1 for more information about these commands.

The Hasegawa-Kishino-Yano (HKY) model

13. Specify a flat Dirichlet prior on the stationary frequencies:

sf_prior <- v(1,1,1,1)
sf � dnDirichlet(sf_prior)
moves[++mvi] = mvBetaSimplex(sf, weight=3)

Like the GTR model specified in step 5 of Basic Protocol 1, the HKY model also assumes
that the base frequencies are not equal to one another.

14. Specify log normal prior on the transition-transversion rate ratio:

kappa � dnLognormal(0, 1)
moves[++mvi] = mvScale(kappa, weight=3)

Under the HKY model, transitions—substitutions between two pyrimidines (C ↔ T) or
between two purines (A ↔ G)—occur at a different rate compared with transversions—
substitutions from a pyrimidine to a purine or vice versa (A ↔ C, A ↔ T, G ↔ C,
or G ↔ T). Thus, this model has a parameter called the transition-transversion rate
ratio (kappa), which is a measure of the relative rate of transitions to transversions.
The commands above specify that kappa is log-normally distributed with a location
parameter (µ) of 0 and a scale parameter (σ ) of 1. This corresponds to an expected value

of 1.648721, since E(kappa) = eμ+ σ2

2 .

15. Create a deterministic variable for the instantaneous rate matrix:

Q:= fnHKY(kappa,sf)

Similar to the specification of the GTR model in step 7 of Basic Protocol 1, the instan-
taneous rate matrix of the HKY model is a deterministic node in the graphical model.
This node is created using the fnHKY function computed via the base frequencies and
transition-transversion rate ratio.

Tree topology and branch lengths

16. Specify the uniform prior distribution on the tree topology:

out_group = clade("Galeopterus_variegatus")
topology � dnUniformTopology(taxa, outgroup=out_group)
moves[++mvi] = mvNNI(topology, weight=5.0)
moves[++mvi] = mvSPR(topology, weight=3.0)

See step 10 of Basic Protocol 1 for more information about these commands.

17. Set up the stochastic nodes representing branch lengths and assemble the tree in a
deterministic node:

for (i in 1:n_branches) {
bl[i] � dnExponential(10.0)
moves[++mvi] = mvScale(bl[i])

}
TL:= sum(bl)
psi:= treeAssembly(topology, bl)

See step 11 of Basic Protocol 1 for more information about these commands.Phylogenetic
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Putting it all together

18. Specify the model of character evolution along the phylogeny and attach the observed
sequence data:

seq � dnPhyloCTMC(tree=psi, Q=Q, type="DNA")
seq.clamp(data)

See steps 12 and 13 of Basic Protocol 1 for more information about these commands.

19. Instantiate the model object:

mymodel = model(Q)

See step 14 of Basic Protocol 1 for more information about this command.

Compute power posterior distributions

20. Create a vector of monitors that output the MCMC samples to file and to screen:

monitors[++mni] = mnModel(filename="output/
primates_cytb_HKY.log", printgen=10, separator=TAB)

monitors[++mni] = mnFile(filename="output/
primates_cytb_HKY.trees", printgen=10,
separator=TAB, phylogeny)

monitors[++mni] = mnScreen(printgen=1000, TL)

See step 9, above (in this protocol), for more information about these commands.

21. Run MCMC under a series of power posteriors:

mypowerp = powerPosterior(mymodel, moves, monitors,
"output/powerp_HKY.out", cats=127, sampleFreq=10)

mypowerp.burnin(generations=10000,tuningInterval=200)
mypowerp.run(generations=10000)

See step 10, above (in this protocol), for more information about these commands.

Estimate marginal likelihoods under the Jukes-Cantor model

22. Use stepping-stone sampling to calculate marginal likelihoods from the output of
the powerPosterior function:

ss_JC = steppingStoneSampler(file="output/
powerp_JC.out", powerColumnName=likelihoodColumn
Name="likelihood")
The steppingStoneSampler function reads the output file produced by the pow-
erPosterior function and computes the marginal likelihood using stepping-stone
sampling. The command above assigns the sampler to a variable called ss_JC and
reads in the power-posterior file saved under the JC model.

23. Assign the stepping-stone estimate of the marginal likelihood to a variable in the
workspace:

ssmlnl_JC = ss_JC.marginal()

A stepping-stone sampler object has a member function called marginal that returns
the marginal likelihood computed from the power-posterior using the stepping-stone
approach (Fan et al., 2011; Xie et al., 2011). In the Rev code above, the value is
assigned to the variable called ssmlnl_JC.

24. Use path sampling to calculate marginal likelihoods from the output of the pow-
erPosterior function:
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ps_JC = pathSampler(file="output/powerp_JC.out",
powerColumnName="power", likelihoodColumnName=
"likelihood")

Path sampling (also called thermodynamic integration) is an alternative approach to
computing the marginal likelihood from a series of power posteriors (Lartillot and
Philippe, 2006; Baele, Lemey, Bedford, Rambaut, Suchard, & Alekseyenko, 2012). Like
the stepping-stone sampler above, the pathSampler function also reads in the power-
posterior output file and can be assigned to a workspace variable.

25. Assign the path-sampling estimate of the marginal likelihood to a workspace vari-
able:

psmlnl_JC = ps_JC.marginal()

Similar to the stepping-stone approach, we can assign the marginal likelihood computed
by path sampling to a workspace variable.

Estimate marginal likelihoods under the HKY model

26. Use stepping-stone sampling to calculate marginal likelihoods:

ss_HKY =
steppingStoneSampler(file="output/powerp_HKY.out",
powerColumnName="power",
likelihoodColumnName="likelihood")

ssmlnl_HKY = ss_HKY.marginal()

Like steps 24 and 25 above, performed for the JC model, a stepping-stone sampler is
created for the HKY model.

27. Use path sampling to calculate marginal likelihoods:

ps_HKY = pathSampler(file="output/powerp_HKY.out",
powerColumnName="power",
likelihoodColumnName="likelihood")

psmlnl_HKY = ps_HKY.marginal()

Like steps 22 and 23 above, performed for the JC model, a path sampler is created for
the HKY model.

Compute Bayes factors

28. Compute the ln-Bayes factor in favor of the JC model using stepping-stone sampling:

ssmlnl_JC - ssmlnl_HKY

To compute the Bayes factor, simply calculate the difference in marginal likelihoods
between the two models under a given type of sampler. This procedure is described
further below, and the difference is equal to K , which is defined in Equation 6.16.2 (see
Guidelines for Understanding Results). The commands above will print the value of K to
the screen, which is the support in favor of the JC model relative to the HKY model
(with marginal likelihoods estimated under stepping-stone sampling; Fan et al., 2011;
Xie et al., 2011).

29. Compute the ln-Bayes factor in favor of the JC model using path sampling:

psmlnl_JC - psmlnl_HKY

The commands above will print the value of K to the screen, which is the support in favor
of the JC model relative to the HKY model (with marginal likelihoods estimated under
path sampling; Lartillot and Philippe, 2006; Baele et al., 2012).Phylogenetic
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30. Refer to Guidelines for Understanding Results for information about how to interpret
ln-Bayes factors.

Evaluate the GTR model

31. Estimate the marginal likelihood under the GTR model and evaluate the support
under the GTR relative to the JC and HKY models using Bayes factors.

The steps outlined in this protocol and the model specification in Basic Protocol 1 provide
all the necessary commands needed for one to estimate the marginal likelihood under
GTR for this dataset. Then, pair-wise comparisons using Bayes factors will enable model
selection among the JC, HKY, and GTR models.

GUIDELINES FOR UNDERSTANDING RESULTS

The goal of a Markov chain Monte Carlo analysis is to generate samples from a target
distribution. In a Bayesian phylogenetic analysis, the target distribution is the joint
posterior distribution, P(θ |X, M), where θ includes all the estimated model parameters,
including the tree topology, branch lengths, exchangeability rates, stationary frequencies,
etc. Thus, we use MCMC simulation to approximate the posterior distribution, and to
find a range of parameters with high posterior probability density (i.e., the 95% credible
interval). In Basic Protocol 1 and Basic Protocol 2, the posterior samples are separated
into two files. The.treesfile contains the sampled posterior distribution of phylogenies
(topologies and branch lengths) stored in Newick format. The .log file contains a tab-
delimited “trace” of each model parameter, with one parameter per column. In both
cases, each row corresponds to the MCMC state when sampled by the corresponding
RevBayes monitor.

Summarizing the Posterior Distribution of Phylogenies

The primary goal of many phylogenetic analyses is to produce a point estimate of the
phylogeny, including its topology and branch lengths. We will compute the maximum
a posteriori (MAP) phylogeny in RevBayes. First, we read in the posterior sample of
non-clock phylogenies.

treetrace = readTreeTrace("output/primates_
cytb.trees", treetype="non-clock")

Next, we compute the MAP tree using the mapTree function.

mapTree(treetrace,"output/primates_partition_MAP.
tre")

The function first finds the topology with the highest posterior probability. Given that
topology, themapTree then uses the mean posterior branch length distribution to provide
a smooth estimate the MAP tree’s branch lengths. Finally, mapTree converts the MAP
tree to a Newick string, annotates it with useful quantities, such as the posterior proba-
bilities of clade support, then saves the Newick string to file. Figure 6.16.4 corresponds
to the MAP tree estimated in Basic Protocol 1 when viewed in the tree-visualization
program FigTree (http://tree.bio.ed.ac.uk/software/figtree).

This analysis of the cytochrome b sequence data of primates shows some interesting
results. There has been considerable disagreement about the placement tarsiers (genus
Tarsius) in the primate phylogeny (Yoder, 2003; Chatterjee, Ho, Barnes, & Groves,
2009; Hartig, Churakov, Warren, Brosius, Makałowski, & Schmitz, 2013). In previous
studies, most support is given to a Tarsius-Haplorhini sister relationship (Haplorhini
includes New World monkeys, Old World monkeys, and anthropoid primates), although
several molecular studies have found conflicting results. The sequence of our Tarsius
representative is placed as a sister lineage to all Strepsirrhini (Strepsirrhini includes
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Figure 6.16.4 MAP tree from Basic Protocol 1 viewed in FigTree. The branch lengths are
in expected number of substitutions and the scale is given at the bottom. Posterior probabilities
supporting clades are reported at internal nodes.

lemurs, lorises, and bushbabies). However, the support for this Tarsius-Strepsirrhini sister
relationship is comparably weak, with a posterior probability of 0.5438, albeit being the
most probable evolutionary relationship given our model and data. Importantly, we want
to stress that this result is based on a very small dataset intended for this exercise.
Nevertheless, this result exemplifies the type of topological questions one can readily
answer from our analysis.

There are alternative ways to summarize the posterior distribution of phylogenies then
using the MAP. For example, other approaches to combining the posterior distribution
into a single point estimate are consensus tree methods (Holder, Sukumaran, & Lewis,
2008; Heled & Bouckaert, 2013). The output of RevBayes can be summarized with
consensus tree methods implemented in other software, such as DendroPy (Sukumaran
& Holder, 2010).

Posterior Estimates for Standard Parameters

The mnModel monitor in RevBayes will discover all non-constant nodes in the graph-
ical model and save their values to a tab-delimited file, known as a trace file. Each row
corresponds to an iteration when the MCMC state was sampled, and each column cor-
responds to a particular variable in the MCMC state space, such as the shape parameter
for among site rate variation.

We will use Tracer (http://tree.bio.ed.ac.uk/software/tracer/) to validate the analysis ran
correctly.

First, we will review the effective sample size (ESS) for parameter estimates. Parameters
with large ESS values generally indicate that the MCMC gathered enough samples to
accurately estimate the parameter’s marginal posterior density. If the ESS is low for a
given parameter (indicated in red), the MCMC may need to be run for more generations
or the move responsible for sampling the parameter in question may need to be assigned
a greater weight.

Second, we will compare the posterior distribution between two independent runs to
assess convergence. If the posterior samples do not appear equivalent, then one (or both)
MCMC analyses failed to produce valid samples from the same posterior distribution.
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Note that even if both posterior samples appear equivalent, it is still possible that neither
MCMC reached convergence. As a rule of thumb, it is easier to show that an MCMC run
has failed than it is to show it succeeded. The visual test described here is not rigorous,
but adequate to rule out gross MCMC failures. More sophisticated tests are available in
the R package (R Core Team, 2013) coda (Plummer, Best, Cowles, & Vines, 2006).

Two independent runs may be accomplished by adding the argument nruns=2 in step
16 of Basic Protocol 1.

mymcmc = mcmc(mymodel, monitors, moves, nruns=2)
Third, assuming that the posterior sample appears valid, we will compare it to the prior
distribution. The posterior distribution is proportional to the prior distribution times the
likelihood function. This means that posterior distribution and prior distribution differ
when the likelihood function is informative—i.e., when the parameter estimates are
informed by data. We can easily sample from the prior distribution under any model by
setting the underPrior=true flag in the mcmc.run method in RevBayes.

To record an estimate of the joint prior distribution under the model, first change the
names of the output files in step 15 of Basic Protocol 1:

monitors[++mni] = mnModel(filename="output/primates_
cytb.prior.log", printgen=10, separator = TAB)

monitors[++mni]
mnFile(filename="output/primates_cytb.prior.trees",
printgen=10, separator = TAB, psi)

Then add the underPrior=true argument to the following commands in step 16 of
Basic Protocol 1:

mymcmc.burnin(generations=10000,tuningInterval=200,
underPrior=true)

mymcmc.run(generations=30000, underPrior=true)
Posterior estimates that look very different from prior estimates tend to be strong results.
However, when posterior and prior estimates appear to be similar, it often means the
data are not informative enough to pull the posterior distribution away from the prior.
If the prior and posterior looked identical, one would expect to get a similar parameter
estimate even if no data were used! This may motivate collecting more data, re-designing
the model to ensure all parameters are identifiable, or considering alternative priors.

Viewing the two independent posterior estimates and the prior estimate in Tracer, it
is likely that the alpha shape parameter for among-site rate variation was adequately
sampled, was estimated with valid samples from the posterior, and does not exhibit strong
prior sensitivity (Fig. 6.16.5).

Interpreting Marginal Likelihoods and Bayes Factors

In Basic Protocol 3, we shifted our focus from parameter estimation to model selection.
The models’ relative fit to the datasets is determined using Bayes factors which are
computed by the ratio of marginal likelihoods. Phylogenetic programs log-transform the
likelihood values to avoid underflow—multiplying likelihoods (numbers < 1) generates
numbers that are too small to be held in computer memory. Accordingly, we need to
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Figure 6.16.5 Posterior and prior estimates for from Basic Protocol 1 viewed in Tracer. The
highlight parameter, alpha, controls the shape of the discrete Gamma distribution used to model
among site rate variation. The peaked black and blue densities correspond to independent pos-
terior densities. The flat red density is the prior density. The posterior estimate of alpha appears
to be supported by a strong signal in the data and to be estimated consistently between the
replicates.

account for this log-transformation in our calculation of the Bayes factor (we will denote
this value K):

K = ln[BF (M0, M1)] = ln[P(X |M0)] − ln[P(X |M1)],

Equation 6.16.1

where ln[P(X |M0)] is the marginal lnL estimate for model M0. The value resulting from
Equation 6.16.1 can be converted to a raw Bayes factor by simply taking the exponent of
K (for more on the raw Bayes factor see Bayesian Model Selection in the Commentary
section below)

B F (M0, M1) = eK.

Equation 6.16.2

Alternatively, you can directly interpret the strength of evidence in favor of M0 in log
space by comparing the values of K to the appropriate scale (Table 6.16.1, second
column). In this case, we evaluate K in favor of model M0 against model M1 so that:

if K > 1, model M0 is preferred
if K < −1, model M1 is preferred.

Thus, values ofK around 0 indicate that there is no preference for either model. Variations
on the Bayes factor and further background are provided in the Commentary section
below.
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Table 6.16.1 The Scale for Interpreting Bayes Factors by Harold Jeffreys (1961)

Strength of evidence BF(M0,M1) log(BF(M0,M1)) log10(BF(M0,M1))

Negative (supports M1) <1 <0 <0

Barely worth mentioning 1 to 3.2 0 to 1.16 0 to 0.5

Substantial 3.2 to 10 1.16 to 2.3 0.5 to 1

Strong 10 to 100 2.3 to 4.6 1 to 2

Decisive >100 >4.6 >2

For a detailed description of Bayes factors see Kass and Raftery (1995)

In Basic Protocol 3, you will find that the values of K computed in steps 28 and 29 indicate
that the data support the HKY model of substitution. It is important to note, however,
that these two models are just a subset of the possible substitution models available
for describing the evolution of nucleotide data. RevBayes provides a straightforward
approach to comparing models (as outlined above), allowing users to evaluate the range
of models selected for their analysis.

COMMENTARY

Background Information

Bayesian inference
Bayesian statistics is used to estimate the

posterior probability distribution of the pa-
rameters of interest given the data following
Bayes’ theorem:

P(θ |X) = P [X|θ ] × P (θ )

P(X)
,

Equation 6.16.3

where the parameters include, among oth-
ers, the tree, branch lengths, and substitution
model parameters. In Bayesian statistics, all
parameters are considered as random vari-
ables. Accordingly, every parameter is asso-
ciated with a prior probability distribution.
The prior probability distribution represents
the probabilities of the parameters before see-
ing the data. These probabilities are updated
by means of the likelihood function when
observing data. The result is the posterior
probability of the parameters after seeing the
data.

The main focus of a Bayesian statistical
analysis is the mean, mode, or maximum a
posteriori (MAP) parameter estimate. For nu-
merical parameters, such as branch lengths,
the mean estimate from the posterior distri-
bution is often the quantity of interest. For
discrete or categorical parameters, such as the
phylogeny, the MAP estimate is preferred. The
MAP estimate of the posterior distribution of
phylogenies is interpreted as the most proba-
ble tree to have generated the observed data.

The posterior probability corresponds to the
probability of the tree being the true tree (as-
suming the underlying model to be the true
model). Bayesian inference has two additional
strengths: (1) Bayesian analyses naturally inte-
grate over nuisance parameters (i.e., accounts
for uncertainty in the substitution rates if the
phylogeny is parameter of interest); and (2)
credible intervals in Bayesian analyses directly
provide a measure of uncertainty in the esti-
mated parameters and are straightforward in
their interpretation.

In most cases, such as phylogenetic infer-
ence, computing the posterior probabilities an-
alytically is not possible. Instead, we resort
to numerical integration procedures such as
Markov chain Monte Carlo (MCMC) to ap-
proximate the posterior probabilities (Rannala
and Yang, 1996; Yang and Rannala, 1997;
Mau, Newton, & Larget, 1999; Li, Pearl, &
Doss, 2000).

Probabilistic graphical models
Graphical models symbolically depict

probabilistic models as graphs (Koller &
Friedman, 2009). This is accomplished by rep-
resenting all model variables as nodes and the
relationships between variables as edges. The
models in Figures 6.16.1 and 6.16.3 provide
a visual representation of the structure of a
statistical model, including the prior proba-
bility distributions (Höhna et al., 2014). In
RevBayes, models are specified using di-
rected acyclic graphs (DAGs): graphs where
all edges denote parent-child relationships be-
tween nodes, and, when following a path of
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consecutive directed edges, the graph is de-
void of any loops or cycles. In a probabilis-
tic model, a child node is a variable whose
value or probability depends on the value of
its immediate parent node(s). There is a natu-
ral relationship between adding and connect-
ing variables in a graphical model, and doing
the same in a programming language. Figure
6.16.2 provides a glossary for the basic com-
ponents of a graphical model and how they are
instantiated inRev. The parameters associated
with prior distributions are shown as solid cir-
cles (Höhna et al., 2014). These parameters
contribute to the joint prior probability den-
sity. Arrows between the parameters show the
dependency between them. The variables as-
sociated with data are shown in shaded solid
circles and contribute to the joint likelihood.

When designing a new model, graphical
models provide valuable clues for how one
might simplify the model by reducing the
number of variables (nodes) or dependencies
(edges). Moreover, due to the correspondence
between asserting parent-child relationships in
the graphical model and in Rev code, draw-
ing a graphical model before programming it
yields code that is easier to read, maintain, and
modify. From the computational side, graph-
ical models enable efficient computation of
model probabilities with MCMC, simulation
under generative models, and marginalization
algorithms. Höhna et al., (2014) provide a
more detailed discussion on the use of graphi-
cal models in phylogenetics.

Markov chain Monte Carlo (MCMC)
simulation

The MCMC algorithm simulates samples
of parameter values from the posterior dis-
tribution. The samples provide information
about the posterior mean and credible interval
of a parameter estimate. In RevBayes, we
have implemented a variant of the Metropolis-
Hastings algorithm (Metropolis, Rosenbluth,
Rosenbluth, Teller, & Teller, 1953; Hastings,
1970). Specifically, our implementation works
as follows:

1. Select the next move from the vector of
provided moves.

2. Apply the selected move which possibly
modifies one or several parameter values.

3. Repeat steps 1 and 2 k times.
4. Sample (i.e., store to a file) the parameter

values if the current iteration is divisible
by the thinning interval (printgen).

5. Repeat steps 1 to 4 until the maximum
number of iterations has been reached.

There are several important details about
this algorithm. First, the next move is either se-
lected randomly or sequentially. If the moves
are selected randomly, then a move is selected
randomly in proportion to its weight. Ran-
dom selection of moves has, in general, the
best performance, although sequential moves
are useful for consecutive updates of depen-
dent or correlated parameters. Second, we ap-
ply k moves per iteration, where k is equal
to the sum of weights of all moves. This has
the advantage that models with many parame-
ters still require the same number of iterations
but perform more moves per iteration (similar
to the MCMC procedure in PhyloBayes; Lar-
tillot et al., 2009). Nevertheless, we provide
the option to run RevBayes with a single,
randomly chosen move per iteration with the
option moveschedule=single. Third,
the composition of moves is unrestricted
to the type of algorithm used (e.g., Gibbs
sampling or Metropolis-Hasting sampling).
In principle, all moves follow the following
algorithm:

1. Propose a new parameter value θ ’ drawn
from the proposal distribution.

2. Compute the acceptance probability

α = P(X|θ ′)
P(X|θ )

× P(θ ′)
P(θ )

× P(θ |θ ′)
P(θ ′|θ )

where P(θ ′|θ ) is the forward proposal
probability (i.e., proposing θ ′ given the
current value θ ) and P(θ |θ ′) is the
backward proposal probability (i.e.,
proposing θ given the current value would
be θ ′).

3. Set the parameter value to θ ′ with
probability α and keep the current
parameter value θ with probability 1 – α.

These moves include, for example, the
sliding-window move, which proposes a new
parameter value θ ′ drawn from a normal dis-
tribution with mean θ (the current value of
the parameter) and a standard deviation of δ

(θ ′�Normal (θ, δ)). δ is a tuning parameter of
the sliding-window move. If δ is large, then the
new proposed parameter values are more dif-
ferent than if δ is small. Good values of δ result
in 20% to 50% accepted moves. Moves that
have tuning parameters are auto-tuned dur-
ing the burn-in phase of the MCMC [see the
.burnin() function; Haario et al., 1999).

Furthermore, RevBayes implements a
Metropolis-Coupled MCMC (MC3) sampler
(Altekar, Dwarkadas, Huelsenbeck, & Ron-
quist, 2004) which is used by the mcmcmc
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function instead of the mcmc function (see
step 16 of Basic Protocol 1). The MC3 sampler
employs one cold and several heated chains.
The heated chains can explore the parameter
space more easily, and thus are considered
to improve mixing and convergence of the
analysis. However, MC3 comes with a higher
computational burden because it requires
more CPU resources to run several chains.

Bayesian model selection
Given two models, M0 and M1, the Bayes-

factor comparison assessing the relative fit of
each model to the data, BF(M0, M1), is:

B F(M0, M1) = posterior odds

prior odds
.

The posterior odds is the posterior proba-
bility of M0 given the data, X, divided by the
posterior odds of M1 given the data:

posterior odds = P (M0|X)

P(M1|X)
,

and the prior odds is the prior probability of
M0 divided by the prior probability of M1:

prior odds = P (M0)

P (M1)
.

Thus, the Bayes factor measures the degree
to which the data alter our belief regarding
the support for M0 relative to M1 (Lavine &
Schervish, 1999):

B F (M0, M1) = P(M0|X, θ0)

P(M1|X, θ1)
÷ P(M0)

P(M1)
.

Equation 6.16.4

Note that interpreting Bayes factors in-
volves some subjectivity That is, it is up to
you to decide the degree of your belief in M0

relative to M1. Despite the absence of an abso-
lutely objective model-selection threshold, we
can refer to the scale (outlined by Jeffreys,
1961) that provides a “rule-of-thumb” for
interpreting these measures (Table 6.16.1).

Unfortunately, it is generally not possible
to directly calculate the posterior odds to prior
odds ratio. However, we can further define the
posterior odds ratio as:

P(M0|X)

P(M1|X)
= P (M0)

P(M1)

P(X|M0)

P(X|M1)
,

where P(X | Mi) is the marginal likelihood of
the data (this may be familiar to you as the
denominator of Bayes Theorem—Equation
6.16.3—which is variously referred to as the

model evidence or integrated likelihood). For-
mally, the marginal likelihood is the proba-
bility of the observed data (X) under a given
model (Mi) that is averaged over all possible
values of the parameters of the model (θ i) with
respect to the prior density on θ i:

P(X|Mi ) =
∫

P(X|θi )P (θi ) dθ.

Equation 6.16.5

This makes it clear that more complex
(parameter-rich) models are penalized by
virtue of the associated prior: each additional
parameter entails integration of the likelihood
over the corresponding prior density.

If you refer back to Equation 6.16.4, you
can see that, with very little algebra, the ratio
of marginal likelihoods is equal to the Bayes
factor:

B F(M0, M1) = P(X|M0)

P(X|M1)

= P(M0|X, θ0)

P(M1|X, θ1)
÷ P(M0)

P(M1)
.

Equation 6.16.6

Therefore, we can perform a Bayes factor
comparison of two models by calculating the
marginal likelihood for each one. Alas, exact
solutions for calculating marginal likelihoods
are not known for phylogenetic models (see
Equation 6.16.5); thus, we must resort to nu-
merical integration methods to estimate or ap-
proximate these values. In Basic Protocol 3,
we estimated the marginal likelihood for each
partition scheme using both the stepping-stone
(Fan et al., 2011; Xie et al., 2011) and path
sampling estimators (Lartillot and Philippe,
2006; Baele et al., 2012).

Phylogenetic Models and Theory
In the previous section we explained

Bayesian inference and MCMC simulation to
estimate posterior probabilities. At the heart of
a Bayesian analysis lies the statistical model
and likelihood function. In phylogenetics, the
model for character evolution is a continu-
ous time Markov model, and the likelihood
function is computed using the Felsenstein’s
pruning algorithm (Felsenstein, 1981). Here
we briefly outline the main elements of the
theory behind phylogenetic substitution mod-
els and refer the readers to the cited primary
literature.
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Substitution model
The substitution models used in molecular

evolution are continuous time Markov mod-
els, which are each fully characterized by their
instantaneous-rate matrix:

Q =

⎛
⎜⎜⎝

−μA μG A μC A μT A

μAG −μG μCG μT G

μAC μGC −μC μT C

μAT μGT μCT −μT

⎞
⎟⎟⎠ ,

where μij represents the instantaneous rate of
substitution from state i to state j. Given the
instantaneous-rate matrix, Q, we can compute
the corresponding transition probabilities for a
branch of length t, P(t), by exponentiating the
rate matrix:

P(t) =

⎛
⎜⎜⎝

pAA(t) pG A(t) pC A(t) pT A(t)
pAG(t) pGG(t) pCG(t) pT G(t)
pAC (t) pGC (t) pCC (t) pT C (t)
pAT (t) pGT (t) pCT (t) pT T (t)

⎞
⎟⎟⎠

= eQt =
∞∑
j=0

t Q j

j!
.

Each specific substitution model has a
uniquely defined instantaneous-rate matrix,
Q. In RevBayes, we provide all stan-
dard substitution models: the Jukes-Cantor
substitution model (fnJC; Jukes & Can-
tor, 1969), the Kimura 2-parameter model
(fnK80; Kimura, 1980), the Kimura 3-
parameter model (fnK81; Kimura, 1981),
the Felsenstein, 1981 model with unequal
stationary frequencies (fnF81; Felsenstein,
1981), the Hasegawa-Kishino-Yano substitu-
tion model with unequal stationary frequen-
cies and different transition-transversion rate
(fnHKY; Hasegawa et al., 1985), the Tamura-
Nei substitution model(fnTrN; Tamura &
Nei, 1993), the transversion model with
unequal stationary frequencies and variable
transversion rates (fnTVM), the transition
model with unequal stationary frequencies,

variable transition rates, and two transver-
sion rates (fnTIM), and the general time re-
versible substitution model (fnGTR; Tavaré,
1986). For example, the instantaneous-rate
matrix for the general-time reversible (GTR)
substitution model is computed by:

QGT R =

⎛
⎜⎜⎝

· erAC × piC erAG × piG rAT × piT

erAC × pi A · erCG × piG erCT × piT

erAC × pi A erCG × piC · erGT × piT

erAC × pi A erCT × piC erGT × piG ·

⎞
⎟⎟⎠ .

Additionally, we provide a general symmet-
ric substitution model [fnFreeSymmetr-
icRateMatrix] and a completely unre-
stricted substitution model [fnFreeK]. Any
of these substitution models can be used in-
terchangeably in the continuous time Markov
process (dnPhyloCTMC) to compute the
probability of observing the sequence data.

Critical Parameters and
Troubleshooting

Model specification in RevBayes de-
pends on variables being created and associ-
ated with one another. This is achieved by issu-
ingRev commands with the correct syntax and
order. It is common to make minor mistakes
when initially designing a model through the
interactive console or executing new scripts.
When RevBayes encounters a mistake, it
emits an error message to help the user find
and repair the issue. For example, an error re-
porting:

Missing Variable: Variable
num_species does not exist

Error: Problem processing line
18 in file

"analysis_files/RevBayes_
scripts/mcmc_G TR_Gamma
_Inv.Rev"

indicates that RevBayes could not execute
line 18 of the corresponding script because
the variable num_species was not found in the
workspace. By examining line 17 of the re-
ported file, we might see the variable is in fact
named n_species, not num_species.

An equally important—but subtler—
problem is determining whether the cor-
rect object, function, or distribution is be-
having as the user intends. Like most
programming languages, RevBayes will
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obediently execute the code exactly as it ap-
pears, and it is the user’s duty to ensure the
code is correct. There are several options if
a RevBayes command is not behaving as
expected. Help files are available within the
console via the ? command, e.g., ?dnNor-
mal will print help files for the normal dis-
tribution. The same help files are also avail-
able online (https://cdn.rawgit.com/revbayes/
revbayes/master/help_html/index.html). The
command in question might be used in an
example published in the online tutorials
(http://revbayes.com/tutorials.html), where it
may be seen in action. Additional help is
available online by posting your question
to the RevBayes forums (https://groups.
google.com/forum/#!forum/revbayes-users).

Diagnosing possible MCMC convergence
and prior sensitivity issues are briefly dis-
cussed in Guidelines for Understanding Re-
sults, above.

Suggestions for Further Analysis
The set of protocols outlined here are just

a small subset of the analyses possible in
RevBayes. The graphical model framework
implemented in RevBayes provides a
flexible toolkit for assembling a wide range
of statistical models (Höhna et al., 2014;
Höhna et al., 2016). For example, the analyses
described above focus only on unrooted
trees with branch lengths in units of the
number of substitutions per site. Studies of
evolutionary biology are often motivated
by questions seeking to understand lineage
relationships on an absolute time scale,
where the branch lengths are in units of
years or millions of years. These analyses,
often called ‘divergence-time estimation’ or
‘relaxed-clock analyses’, are also possible
in RevBayes. To construct the graphical
model, one would replace the distributions
describing the tree topology [e.g., topology
� dnUniformTopology()] and branch
lengths [e.g., bl[i] � dnExponen-
tial(10.0)] and the deterministic
function uniting them [e.g., psi:= tree-
Assembly(topology, bl)] with a
model that generates rooted time trees (e.g.,
the birth-death process; Kendall, 1948; Nee,
May, & Harvey, 1994) and a model that
describes how substitution rates vary across
the tree (e.g., autocorrelated, log-normal rates;
Thorne, Kishino, & Painter, 1998). For robust
estimates of absolute branching times with
data from the fossil record, one can replace
the general birth-death process (Kendall,
1948) with the ‘fossilized birth-death’ process

(Stadler, 2010; Heath, Huelsenbeck, & Stadler,
2014). Tutorials describing these types of
analyses are provided in the Divergence
Time Estimation section of the RevBayes
tutorial Web page (http://revbayes.com/
tutorials.html). The flexibility afforded by
probabilistic graphical models makes for a
vast array of possible model combinations,
and therefore the possible questions and
analyses are tremendous.

The design of RevBayes enables re-
searchers to conduct statistical phyloge-
netic analyses under increasingly complex—
and biologically realistic—models of evo-
lution in a fully integrative Bayesian
framework. The RevBayes documenta-
tion includes several tutorials describing the
procedures for performing a number of
different phylogenetic analyses. These tuto-
rials can be found on the RevBayes Web
page (http://revbayes.com/tutorials.html) and
are applicable to evolutionary biology stud-
ies investigating historical biogeography, phy-
logeography, continuous and discrete traits,
evolution of gene trees within species trees,
diversification of lineages in the fossil record,
variation in rates of molecular evolution across
sites, evolution of continuous traits, and many
others. Moreover, the engineering, philosophy,
and open-source license of RevBayes and
the Rev language empower researchers to de-
velop and implement phylogenetic models and
methods that have not yet been discovered or
described. Thus, flexible and open software for
phylogenetic analysis will lead to many excit-
ing advances in our understanding of evolu-
tionary biology.
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Höhna, S., Defoin-Platel, M., & Drummond, A.
(2008). Clock-constrained tree proposal op-
erators in Bayesian phylogenetic inference.
Pages 1-7 in 8th IEEE International Con-
ference on BioInformatics and BioEngineer-
ing Athens, Greece. doi: 10.1109/BIBE.2008.
4696663.
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