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Abstract.—Standard models of molecular evolution cannot estimate absolute speciation times alone, and require external
calibrations to do so, such as fossils. Because fossil calibration methods rely on the incomplete fossil record, a great number
of nodes in the tree of life cannot be dated precisely. However, many major paleogeographical events are dated, and since
biogeographic processes depend on paleogeographical conditions, biogeographic dating may be used as an alternative
or complementary method to fossil dating. I demonstrate how a time-stratified biogeographic stochastic process may be
used to estimate absolute divergence times by conditioning on dated paleogeographical events. Informed by the current
paleogeographical literature, I construct an empirical dispersal graph using 25 areas and 26 epochs for the past 540 Ma of
Earth’s history. Simulations indicate biogeographic dating performs well so long as paleogeography imposes constraint on
biogeographic character evolution. To gauge whether biogeographic dating may be of practical use, I analyzed the well-
studied turtle clade (Testudines) to assess how well biogeographic dating fares when compared to fossil-calibrated dating
estimates reported in the literature. Fossil-free biogeographic dating estimated the age of the most recent common ancestor of
extant turtles to be from the Late Triassic, which is consistent with fossil-based estimates. Dating precision improves further
when including a root node fossil calibration. The described model, paleogeographical dispersal graph, and analysis scripts
are available for use with RevBayes. [biogeography, phylogenetics, paleogeography, tree-dating, Testudines, Bayesian.]

Time is a simple and fundamental axis of evolution.
Knowing the order and timing of evolutionary events
grants us insight into how vying evolutionary processes
interact. With a perfectly accurate catalog of geologically
dated speciation times, many macroevolutionary
questions would yield to simple interrogation, such
as whether one clade exploded with diversity before
or after a niche-analogous clade went extinct, or
whether some number of contemporaneous biota were
eradicated simultaneously by the same mass extinction
event. Only rarely does the fossil record give audience to
the exact history of evolutionary events: it is infamously
irregular across time, space, and species, so biologists
generally resort to inference to estimate when, where,
and what happened to fill those gaps. That said, we have
not yet found a perfect character or model to infer dates
for divergence times, so advances in dating strategies
are urgently needed. A brief survey of the field reveals
why.

The molecular clock hypothesis of Zuckerkandl and
Pauling (1962) states that if substitutions arise (i.e.,
alleles fix) at a constant rate, the expected number of
substitutions is the product of the substitution rate and
the time the substitution process has been operating.
With data from extant taxa, we only observe the outcome
of the evolutionary process for an unknown rate and an
unknown amount of time. In this case, rate and time
are not separately identifiable, so they are estimated as
their product, a compound parameter called length. If
all species evolved under a single rate (a strict clock),
a phylogeny with branches measured in lengths would
give relative divergence times, that is, proportional
to absolute divergence times. The same is true when
substitution rates vary across lineages (Wolfe et al. 1987;
Martin and Palumbi 1993) and relaxed clock models are

applied (Thorne et al. 1998; Drummond et al. 2006): only
relative times may be estimated. Extrinsic information,
for example, a dated calibration density, is needed to
establish an absolute timescale, and typically takes form
as a fossil occurrence or paleogeographical event.

Fossils may be used in several ways to calibrate
divergence times. The simplest method is the fossil node
calibration, whereby the fossil is associated with a clade
to constrain its time of origin (Ho and Phillips 2009;
Parham et al. 2012). Node calibrations are empirical
priors, not data-dependent stochastic processes, so they
depend on experts’ abilities to quantify the distribution
of plausible ages for the given node. That is, node
calibrations do not arise from a generative evolutionary
process, so the posterior timescale is entirely determined
by how the prior is specified. Rather than using
prior node calibrations, fossil tip-dating (Pyron 2011;
Ronquist et al. 2012) treats fossil occurrences as terminal
taxa with morphological characters as part of any
standard phylogenetic analysis. The tree prior and
model of morphological evolution are jointly applied
to date speciation times from the fossils’ ages and
morphological data. Introducing a generative process of
fossilization, Heath et al. (2014) developed the fossilized
birth–death process, by which lineages speciate, go
extinct, or produce fossil observations. Using fossil tip-
dating with the fossilized birth–death process, Zhang
et al. (2015) and Gavryushkina et al. (2015) demonstrated
multiple calibration techniques may be used in tandem
in a theoretically consistent framework (i.e. without
introducing model violation).

Of course, fossil calibrations require fossils, but many
clades leave few to no known fossils due to taphonomic
processes, which filter out species with soft or fragile
tissues, or with tissues that were buried in substrates
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that were too humid, too arid, or too rocky; or due to
sampling biases, such as geographical or political biases
imbalancing collection efforts (Behrensmeyer et al. 2000;
Kidwell and Holland 2002). Although these biases do not
prohibitively obscure the record for widespread species
with robust mineralized skeletons—as is the case for
many marine invertebrate and large vertebrate groups—
fossil-free calibration methods are desperately needed to
date the remaining majority of nodes in the tree of life.

In this direction, analogous to fossil node-dating,
node dates may be calibrated using paleobiogeographic
scenarios (Heads 2005; Renner 2005). An ornithologist,
for example, might reasonably argue that a bird known
as endemic to a young island may have speciated
only after the island was created, thus providing a
maximum age of origin. However, using this scenario
as a calibration excludes the possibility of alternative
historical biogeographic explanations, for example, the
bird might have speciated off-island before the island
surfaced and migrated there afterward; see Heads (2005,
2011), Kodandaramaiah (2011), and Ho et al. (2015) for
discussion on the uses and pitfalls of biogeographic
node calibrations. Biogeographic node calibrations, like
fossil node calibrations, fundamentally rely on some
prior distribution of divergence times. This complicates
model comparison since prior-encoded beliefs vary
from expert to expert. Worsening matters, the time
and context of biogeographic events are never directly
observed, so asserting that a particular dispersal event
into an island system resulted in a speciation event
to calibrate a node fails to account for the uncertainty
that the assumed evolutionary scenario took place
at all. When estimating ancestral states, phylogenies
dated by biogeographic node calibrations should be
avoided, for fear of producing falsely confident results
by “double counting” the data: once when justifying
the node calibrations and again when performing
the biogeographic inference. Ideally, to avoid these
problems, all possible biogeographic and diversification
scenarios would be considered jointly, with each
scenario given credence in proportion to its probability.

Inspired by advents in fossil dating models (Pyron
2011; Ronquist et al. 2012; Heath et al. 2014),
which have matured from phenomenological toward
mechanistic approaches (Rodrigue and Philippe 2010), I
present an explicitly data-dependent and process-based
biogeographic method for divergence time dating to
formalize the intuition underlying biogeographic node
calibrations. Analogous to fossil tip-dating, the goal is
to allow the observed biogeographic states at the “tips”
of the tree to induce a posterior distribution of dated
speciation times by way of an evolutionary process.
By modeling dispersal rates between areas as subject
to time-calibrated paleogeographical information, such
as the merging and splitting of continental adjacencies
due to tectonic drift, particular dispersal events between
area-pairs are expected to occur with higher probability
during certain geological time intervals than during
others. For example, the dispersal rate between South
America and Africa was likely to be higher when they

were joined as West Gondwana (ca. 120 Ma) than when
separated as they are today. If the absolute timing of
dispersal events on a phylogeny matters, then so must
the absolute timing of divergence events. Unlike fossil
tip-dating, biogeographic dating should, in principle, be
able to date speciation times only using extant taxa.

To illustrate how this is possible, I construct a
toy biogeographic example to demonstrate when
paleogeography may date divergence times, then
follow with a more formal description of the model.
By performing joint inference with molecular and
biogeographic data, I demonstrate the effectiveness
of biogeographic dating by applying it to simulated
and empirical scenarios, showing rate and time are
identifiable. While researchers have accounted for
phylogenetic uncertainty in biogeographic analyses
(Nylander et al. 2008; Lemey et al. 2009; Beaulieu
et al. 2013), I am unaware of work demonstrating
how paleogeographic calibrations may be leveraged to
date divergence times via a biogeographic process. For
the empirical analysis, I date the divergence times for
Testudines using biogeographic dating, first without any
fossils, then using a fossil root node calibration. Finally,
I discuss the strengths and weaknesses of the method,
and how it may be improved in future work.

MODEL

The Anatomy of Biogeographic Dating
Briefly, I will introduce an example of how

time-calibrated paleogeographical events may impart
information through a biogeographic process to date
speciation times, then later develop the details
underlying the strategy, which I refer to as biogeographic
dating. Throughout the article, I assume a rooted
phylogeny with known topology but with unknown
divergence times that I wish to estimate. Time is
measured in geological units and as time until present,
with t=0 being the present, t<0 being the past, and
age being the negative amount of time until present.
To keep the model of biogeographic evolution simple,
the observed taxon occurrence matrix is assumed to
be generated by a discrete-valued dispersal process
where each taxon is present in only a single area at
a time (Sanmartín et al. 2008). For example, taxon T1
might be coded to be found in area A or area B, but
not both simultaneously. Although basic, this model is
sufficient to make use of paleogeographical information,
suggesting more realistic models will fare better.

Consider two areas, A and B, that drift into and out of
contact over time. When in contact, dispersal is possible;
when not, impossible. The dispersal rate between A and
B equals one when the disperal route exists, and equals
zero when it does not. When A and B have a dispersal
rate of zero, because the two areas are not connected
by alternate dispersal routes, however circuitous, the
probability of transitioning from area A to area B equals
zero no matter how much time elapses. Under this
construction, certain types of dispersal events are more
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FIGURE 1. Biogeographic dating toy example. Two paleogeographic scenarios are given: a split event (a and b) and a merge event (c and d).
Scenarios assume only a single dispersal event occurs for a given branch (see text). a, b) T1 and T2 have state A and the transition A→B most
parsimoniously explains how T3 has state B. The transition probabilty for P=[P(s,t)]AB is nonzero before the paleogeographical split event at
time �, and is zero afterward. Two possible divergence and dispersal times are given: a) T3 originates before the split when the transition A→B
has nonzero probability. b) T3 originates after the split when the transition A→B has probability zero. c, d) T1 and T2 have the state A and
the transition A→B on the lineage leading to (T3,T4) most parsimoniously explains how T3 and T4 have state B. The transition probabilty for
P=[P(s,t)]AB is zero before the paleogeographical merge event at time �, and only nonzero afterward. Two possible divergence and dispersal
times are given: c) T3 and T4 originate after the merge when the transition A→B has nonzero probability. d) T3 and T4 originate before the
merge when the transition A→B has probability zero.

likely to occur during certain absolute (not relative) time
intervals, which potentially influences probabilities of
divergence times in absolute units.

In practice, biogeographic dating requires three
sources of data: molecular data to accurately estimate
the relative branch lengths and (if desired) topology
of a rooted species tree, biogeographic data to inform
the biogeographic process that in turn informs the
branch lengths in absolute time, and an empirical
paleogeographic model that alters the rates of
biogeographic change over time. As later described in
the “Analysis” section, these data are jointly analyzed
in a Bayesian framework using RevBayes (Höhna et al.
2014), but the general concept is not wed to a particular
inference methodology.

Below, I give examples of when a key divergence event
is likely to precede a split event (Figs. 1a,b) or to follow
a merge event (Figs. 1c,d). To simplify matters without
compromising the general logic of the method, I assume
only a single change occurs on a particular branch
given the topology and tip states. In this sense, the toy
examples resemble parsimony reconstructions, except
they depend critically on branch length information.

In the first scenario (Figs. 1a,b), sister taxa T2 and T3
are found in areas A and B, respectively. The divergence

time, s, is a random variable to be inferred. At time
�, the dispersal route (A,B) is destroyed, inducing the
transition probability between areas A and B to equal
zero between times � and 0. Since T2 and T3 are found
in different areas, at least one dispersal event must
have occurred during an interval of non-zero dispersal
probability. Then, the divergence event that gave rise to
T2 and T3 must have also predated �, with at least one
dispersal event occuring before the split event (Fig. 1a).
If T2 and T3 diverge after �, a dispersal event from A
to B is necessary to explain the observations (Fig. 1b),
but the model disfavors that divergence time because
the required transition has probability zero. In this
case, the creation of a dispersal barrier informs the
latest possible divergence time, a threshold after which
divergence between T2 and T3 is distinctly less probable
if not impossible. It is also worth considering that a
more complex process modeling vicariant speciation
would provide tighter thresholds centered on � (see
“Discussion” section).

In the second scenario (Figs. 1c,d), the removal of
a dispersal barrier is capable of creating a maximum
divergence time threshold, pushing divergence times
toward the present. To demonstrate this, say the ingroup
sister taxa T3 and T4 both inhabit area B and the
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root state is area A. Before the areas merge, the rate
of dispersal between A and B is zero, and nonzero
afterward. When speciation happens after the areas
merge, then the ancestor of (T3,T4) may disperse from
A to B, allowing T3 and T4 to inherit state B (Fig. 1c).
Alternatively, if T3 and T4 originate before the areas
merge, then the same dispersal event on the branch
ancestral to (T3,T4) has probability zero (Figure 1d). By
relaxing the assumptions of the toy example, the last
scenario could also be explained using two independent
events, one leading to T3 and one leading to T4. For
most conditions, assuming the tip states and topology
are given, two events will be less likely than one event.

Time-Heterogeneous Dispersal Process
A time-heterogeneous continuous-time Markov chain

(CTMC) will be used to model the formal behavior
outlined in the toy example above. The CTMC is
attractive as an evolutionary model because its transition
probabilities may be efficiently computed for any
given instantaneous rate matrix, Q, and the amount
of time a lineage has been evolving, t. Under the
CTMC, the transition probability matrix, P(t), reports the
probability that a lineage beginning in one character state
ends in any particular state after time t by considering
the infinite number of possible evolutionary histories
consistent with the start and end states. Structuring the
dispersal rates will, therefore, leave its impression upon
the resulting dispersal probabilities.

Here, the paleogeographical features that determine
the dispersal process rates are assumed to follow a
piecewise constant model, sometimes called a stratified
(Ree et al. 2005; Ree and Smith 2008) or epoch model
(Bielejec et al. 2014), where K−1 breakpoints are dated
in geological time to create K time intervals. The
addition and removal of dispersal routes demarcate time
intervals, or epochs, each corresponding to some epoch
index, k ∈{1,...,K}. Note, these epochs are time intervals
defined by the model and do not necessarily coincide
with geological epochs. These breakpoint times populate
the vector, �= (�0 =−∞,�1,�2,...,�K−1,�K =0), with the
oldest interval spanning deep into the past, and the
youngest interval spanning to the present.

For a time-homogeneous CTMC, the transition
probability matrix is typically written as P(t), which
is computed for some branch length, t, using the
parameters Q, the rate matrix, and �, the clock rate.
For a piecewise constant CTMC, the value of the rate
matrix, Q(k), changes as a function of the underlying
time interval. While a lineage exists during the k-
th time interval, its biogeographic characters evolve
according to that interval’s rate matrix, Q(k), whose
rates are informed by paleogeographical features present
during the epoch spanning �k−1 < t≤�k . As an example
of a paleogeographically informed matrix’s structure,
take G(k) to be an adjacency matrix indicating 1
when dispersal may occur between two areas and 0
otherwise, during time interval k. This adjacency matrix

is equivalent to an undirected graph where areas are
vertices and edges are dispersal routes. Full empirical
examples of G= (G(1),G(2),...,G(K)) describing Earth’s
paleocontinental adjacencies are given in detail later
(section “Adjacent-Area Terrestrial Dispersal Graph”).
With the paleogeographical vector G, I define the
transition rates of Q(k) as equal to G(k), with the rate
matrix of each epoch rescaled to have an average rate
of one. Similar rate matrices are constructed for all K
time intervals that contain possible supported root ages
for the phylogeny. Supplementary Figure S1 (available
on Dryad at http://dx.doi.org/10.5061/dryad.dq666)
provides an example of two epochs with differing
transition probability matrices.

The transition probability matrix for the piecewise
constant process, P(s,t), is the matrix product of
the constituent epochs’ time-homogeneous transition
probability matrices, and takes a value determined by
the absolute time and order of paleogeographical events
contained between the start time, s, and end time, t.
Under this construction, certain types of dispersal events
are more likely to occur during certain absolute (not
relative) time intervals, which potentially influences
probabilities of divergence times in absolute units.

For a piecewise constant CTMC, the process’s
transition probability matrix is the product of transition
probability matrices spanning m breakpoints. To
simplify notation, let v be the vector marking important
times of events, beginning with the start time of the
branch, s, followed by the m breakpoints satisfying
s<�k < t, ending with the end time of the branch, t,
such that v= (s,�k,�k+1,...,�k+m−1,t), and let u(vi,�) be
a “look-up” function that gives the index k that satisfies
�k−1 <vi ≤�k . The transition probabilty matrix over the
intervals in v according to the piecewise constant CTMC
given by the vectors � and Q is

P�(v,�;�,Q)=
m+1∏

i=1

e�(vi+1−vi)Q(u(vi,�))

The pruning algorithm (Felsenstein 1981) is agnostic
as to how the transition probabilties are computed
per branch, so introducing the piecewise constant
CTMC does not prohibit the efficient computation of
phylogenetic model likelihoods; Bielejec et al. (2014)
provides an excellent review of piecewise constant
CTMCs as applied to phylogenetics.

For a time-homogeneous model where �= (−∞,0),
multiplying the rate and dividing the branch
length by the same factor results in an identical
transition probability matrix. In practice, the time-
homogeneous model provides no information for
the values of the clock rate and the branch lengths
in the tree, since all branch rates could likewise
be multiplied by some constant while branch
lengths were divided by the same constant, that is,
P�((s,t),1;�,Q)=P�((�−1s,�−1t),�;�,Q). Similarly,
assuming time homogeneity, only the elapsed amount
of time—but not the absolute times the process starts

http://dx.doi.org/10.5061/dryad.dq666
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and ends running—affects the transition probabilities,
that is, P�((s,t),�;�,Q)=P�((s+c,t+c),�;�,Q). In
contrast, the times s and t are identifiable from � so
long as P�(v,�;�,Q) �=P�(v′,�′;�,Q) for the supported
values of v,�,v′, and �′ under time-heterogeneous
CTMCs. Expanding from a treeless branch to the set of
branches embedded in a time tree, the node ages would
be identifiable so long as no two sets of node age values
share identical phylogenetic model likelihoods. Barring
pathological examples, the possibility that likelihood-
equivalent parameters exist will generally decrease as
the structural complexity of the time-heterogeneous
model increases. Proving the particular conditions for
which node ages are (or are not) identifiable under a
time-heterogeneous model is a challenging and open
question, but may be explored numerically through
simulations.

The paleogeographically structured biogeographic
CTMC described in this section is one example of a rate–
time identifiable time-heterogeneous stochastic process.
More broadly, any time-heterogeneous evolutionary
process with transition probabilities influenced by dated
historical observations should be capable of inducing a
time-calibrated distribution of speciation times. In this
framework, the quality of the estimate would largely
depend on whether those influences are modeled in a
realistic, justified, and principled manner.

Paleogeography, Dispersal Graphs, and Markov Chains
Fundamentally, biogeographic dating depends on

how rapidly particular types of biogeographic events
occur, and how the rates of biogeographic evolution
change over time. The dispersal scenarios in Figure 1
depend on the notion of reachability, which I develop to
build intuition for how the method works. For simplicity,
I will assume the dispersal rates between pairs of areas
are symmetric. One area is reachable by another area so
long as they are connected by some series of dispersal
routes of any length, called a path. A path may be
thought of as any potential sequence of evolutionary
events that allows a lineage to disperse from one area to
another, including the use of dispersal events through
intermediate areas. Under a CTMC, for any positive
amount of time, the transition probability between areas
is positive if the areas share at least one path, and
zero if they do not. This property potentially gives rise
to distinct communicating classes. Each communicating
class contains all areas that are mutually reachable, and
hence share positive transition probabilities. Conversely,
the transition probabilities between areas belonging
to different communicating classes equal zero, as
they are unreachable. Because the area adjacencies
change per epoch under a paleogeographical model,
so do the corresponding transition probabilities and
communicating classes. Taking terrestrial biogeography
as an example, areas exclusive to Gondwana or
Laurasia may each reasonably form communicating
classes upon the break-up of Pangaea (Fig. 2), meaning

lineages are free to disperse between areas within these
paleocontinents, but not to and from areas on other
paleocontinents. For example, the set of communicating
classes is S = {{Afr}, {As}, {Ind}} at t=−100, that is,
there are |S|=3 communicating classes because no areas
share edges (Fig. 2c), while at t=−10 there is |S|=1
communicating class since a path exists between all three
pairs of areas (Fig. 2e).

In one extreme case, dispersals between mutually
unreachable areas do not occur even after infinite time,
and hence have zero probability. At the other extreme,
when dispersal may occur between any pair of areas
with equal probability over all time intervals, then
paleogeography does not favor nor disfavor dispersal
events (nor divergence events, implicitly) to occur during
particular time intervals. In intermediate cases, where
dispersal probabilities between areas vary across time
intervals, the dispersal process informs when and what
dispersal (and divergence) events occur. For instance, the
transition probability of going from area i to j decreases
as the average path length between i and j increases.
During some time intervals, the average path length
between two areas might be short, thus dispersal events
occur more freely than when the average path is long.
Comparing Figure 2a and e, the minimum number
of events required to disperse from India to Africa is
smaller during the Triassic (e.g., at t=−250) than during
the present (t=0), and thus would have a relatively
higher probability given the process operated for the
same amount of time today (e.g., for a branch with
the same length). Interestingly, even lineages with no
biogeographic variation impart some information for
when a period of biogeographic stasis might begin. It
will be most probable for a lineage to remain in a given
area during epochs where the area is not connected
to any dispersal routes. This particular signal of stasis
is difficult, if not impossible, to account for under
parsimony and node-based calibration methods.

Specifying communicating classes is partly difficult
because we do not know the ease of dispersal
between areas for most species throughout space and
time. Biologically, encoding zero-valued dispersal rates
directly into the model should be avoided given
the apparent prevalence of long-distance dispersal,
sweepstakes dispersal, etc. across dispersal barriers
(Carlquist 1966). Mathematically, zero-valued rates may
imply that dispersal events between certain areas are
not merely improbable but utterly impossible, creating
troughs of zero likelihood in the likelihood surface
for certain dated-phylogeny-character patterns (Buerki
et al. 2011). In a biogeographic dating framework,
this might unintentionally eliminate large numbers
of speciation scenarios from the space of possible
hypotheses, resulting in distorted estimates. To avoid
these problems, I take the dispersal graph as the
weighted average of three distinct dispersal graphs
assuming short-, medium-, or long-distance dispersal
modes, each with their own set of communicating
classes (see section “Adjacent-Area Terrestrial Dispersal
Graph”).
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a) b) c)
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FIGURE 2. Biogeographic communicating classes. Dispersal routes shared by Africa (Afr), Asia (As), and India (Ind) are depicted for five
consecutive epochs (a-e) over the past 300 Ma. Time intervals for each epoch are given by t. Dispersal path lengths between areas i and j are
given by di,j , with NA meaning there is no route between areas (areas i and j are mutually unreachable). Communicating classes per interval are
given by S and by the shared coloring of areas (vertices), with |S| being the number of communicating classes.

The concepts of adjacency, reachability, and
communicating classes are not necessary to structure
the rate matrix such that biogeographic events inform
divergence times, though their simplicity is attractive.
One could yield similar effects by parameterizing
dispersal rates as functions of more complex area
features, such as geographical distance between areas
(Webb and Ree 2012; Landis et al. 2013) or the size of
areas (Tagliacollo et al. 2015). In this study, the concepts
introduced in this section serve the practical purpose of
summarizing perhaps the most salient feature of global
paleogeography—that continents were not always
configured as they are today—but also illuminate how
time-heterogeneous dispersal rates produce transition
probabilities that depend on geological time, which in
turn inform the dates of speciation times.

Adjacent-Area Terrestrial Dispersal Graph
I identified K =26 times and N =25 areas to capture

the general features of continental drift and its
effects on terrestrial dispersal (Fig. 3; Supplemental
Figure S8 available on Dryad). All adjacencies were

constructed visually, referencing Blakey (2006) and
GPlates (Boyden et al. 2011), then corroborated using
various paleogeographical sources (Supplementary
Table S2 available on Dryad). The paleogeographical
state per time interval is summarized as an undirected
graph, where areas are vertices and dispersal routes are
edges.

To proceed, I treat the paleogeographical states over
time as a vector of adjacency matrices, where G•(k)i,j =
1 if areas i and j share a dispersal edge at time
interval k, and G•(k)i,j =0 otherwise. A subscript (•)
is used to distinguish adjacency matrices generated
under alternative area adjacency criteria. Temporarily,
I suppress the time index, k, for the rate matrix Q(k),
since all time intervals’ rate matrices are constructed
in a similar manner. To mitigate the effects of model
misspecification, Q is determined by a weighted average
of three geographical adjacency matrices

G=bsGs +bmGm +blGl (1)

where s, m, and l correspond to short-, medium-, and
long-distance dispersal modes. The parameters bs, bm,
and bl sum to 1 and are to be estimated, thus weighing
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FIGURE 3. Dispersal graph for Epoch 14, 110–100Ma: India and Madagascar separate from Australia and Antarctica. A GPlates (Gurnis et al. 2012)
screenshot of Epoch 14 of 26 is displayed. Areas are marked by black vertices. Black edges indicate both short- and medium-distance dispersal
routes. Gray edges indicate exclusively medium-distance dispersal routes. Long-distance dispersal routes are not shown, but are implied to exist
between all area-pairs. The short-, medium-, and long-distance dispersal graphs have 8, 1, and 1 communicating classes, respectively. Only India
may reach Madagascar by short-distance dispersal, and vice versa, forming one of the eight short-distance communicating classes. Both areas
maintain medium-distance dispersal routes with various Gondwanan continents during this epoch. The expansion of the Tethys Sea impedes
dispersal into and out of Europe. Section “Paleogeography, Dispersal Graphs, and Markov Chains” explains how communicating classes are
determined.

the importance of each dispersal mode according to the
data.

Short-, medium-, and long-distance dispersal
processes encode strong, weak, and no geographical
constraint, respectively. As distance-constrained mode
weights bs and bm increase, the dispersal process
grows more prone to remaining within a particular
communicating class (Supplementary Fig. S2 available
on Dryad). The vector of short-distance dispersal graphs,
Gs = (Gs(1),Gs(2),...,Gs(K)), marks adjacencies for pairs
of areas that allow terrestrial dispersal without traveling
over bodies of water (Supplementary Figs. S2a,b
available on Dryad ). Medium-distance dispersal
graphs, Gm, include all adjacencies in Gs in addition
to adjacencies for areas separated by lesser bodies of
water, such as throughout the Malay Archipelago,
while excluding transoceanic adjacencies, such as
between South America and Africa (Supplementary
Figs. S2c,d available on Dryad). Finally, long-distance
dispersal graphs, Gl, allow dispersal events to occur
between any pair of areas, regardless of potential barrier
(Supplementary Figs. S2e,f available on Dryad).

To average over the three dispersal modes, bs, bm, and
bl are constrained to sum to 1, causing all elements in
G to take values from 0 to 1 (Equation 1). Importantly,
adjacencies specified by Gs always equal 1, since those
adjacencies are also found in Gm and Gl. This means
Q is a Jukes–Cantor rate matrix only when bl =1, but

becomes increasingly paleogeographically structured
as bl →0. Non-diagonal elements of Q equal those of
G, but are rescaled such that the average number of
transitions per unit time is one, while diagonal elements
of Q equal the negative sum of the remaining row
elements. To compute transition probabilities, Q is later
rescaled by a biogeographic clock rate, �, prior to matrix
exponentiation. The effects of the weights bs, bm, and bl
on dispersal rates between areas are shown in Figure 4.

By the argument that continental break-up (i.e., the
creation of new communicating classes; Figs. 1a,b)
introduces a lower threshold on the minimum age of
divergence, and that continental joining (i.e., unifying
existing communicating classes; Figs. 1c,d) introduces
an upper threshold on the maximum age of divergence,
then the paleogeographical model I constructed has
the greatest potential to provide both upper and lower
thresholds (soft bounds) on divergence times when the
number of communicating classes is large, then small,
then large again. This coincides with the formation of
Pangaea, dropping from 8 to 3 communicating classes
at 280 Ma, followed by the fragmentation of Pangaea,
increasing from 3 to 11 communicating classes between
170 Ma and 100 Ma (Fig. 5). It is important to consider
this bottleneck in the number of communicating classes
will be informative of root age only for fortuitous
combinations of species range and species phylogeny.
Just as some clades lack a fossil record, others are bound
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Q =

⎡
⎣

- 0.3 1.0
0.3 - 0.1
1.0 0.1 -

⎤
⎦

As

Ind

Afr bs + bm + bl = 1.0

qAfr,Ind = 0.7 + 0.2 + 0.1 = 1.0
qAfr,As = 0.2 + 0.1 = 0.3
qAs,Ind = 0.1 = 0.1

FIGURE 4. Example mode-weighted dispersal matrix. Short-,
medium-, and long-distance dispersal edges are represented by solid
black, dashed black, and solid gray lines, respectively. Short-, medium-
, and long-distance dispersal weights are (bs,bm,bl)= (0.7,0.2,0.1). The
resulting mode-weighted dispersal matrix, Q, is computed with areas
(states) ordered as (Afr, As, Ind). Afr and Ind share a short-distance
dispersal edge, therefore, the dispersal weight is bs +bm +bl =1.0. Afr
and As share a medium-distance edge with dispersal weight bm +bl =
0.3. Dispersal between As and Ind occurs over a long-distance dispersal
edge with weight bl =0.1.

to lack a biogeographic record that is informative of
origination times.

ANALYSIS

All posterior densities were estimated using Markov
chain Monte Carlo (MCMC) as implemented in
RevBayes available at http://revbayes.com (Höhna
et al. 2014). Data and analysis scripts are available both
on Dryad (http://dx.doi.org/10.5061/dryad.dq666)
and on GitHub (http://github.com/mlandis/biogeo_
dating). Analyses were performed on the XSEDE
supercomputing cluster (Towns et al. 2014).

Simulation
Through simulation I tested whether biogeographic

dating identifies rate from time. The simulation analyses
were designed only to verify that the method was
adequately well-behaved to merit further study. To
proceed, I designed the analysis so divergence times are
informed solely from the molecular and biogeographic
data and their underlying processes (Table 1). As a
convention, I use the subscript x to refer to molecular
parameters and z to refer to biogeographic parameters.
Specifically, I defined the molecular clock rate as �x =
e/r, where e gives the expected number of molecular
substitutions per site and r gives the tree height. Both
e and r are distributed independently by uniform priors
on (0,1000). Biogeographic events occur with rate, �z =
�x10sz where sz has a uniform prior distribution on
(−3,3). To further subdue effects from the prior on
posterior parameter estimates, the tree prior assigns
equal probability to all node age distributions. No node
calibrations were used. Each data set was analyzed with
(+G) and without (–G) the paleogeographic-dependent
dispersal process.

Two further assumptions were made to simplify
the analyses. First, although divergence times were
free to vary, the tree topology was assumed to be
known. Second, molecular and biogeographic characters
evolve by strict global clocks. In principle, inferring the
topology or using relaxed clock models should increase
the variance in posterior divergence time estimates, but
not greatly distort the performance of –G relative to +G.

Phylogenies with M=50 extant taxa were simulated
using a birth–death process with birth rate, �=0.25, and
death rate, �=0.15, then rescaled so the root age equaled
250 Ma. Each data set contained 500 nucleotides and 1
biogeographic character. Biogeographic characters were
simulated under +G, where G is defined as piecewise
constant over 25 areas and 26 time intervals in the
manner described in section “Adjacent-Area Terrestrial
Dispersal Graph”. In total, I simulated 100 data sets
under the parameter values given in Table 1, where
these values were chosen to reflect possible empirical
estimates. Each data set was analyzed under each of
two models, then analyzed a second time to verify
convergence (Gelman and Rubin 1992; Plummer et al.
2006). When summarizing posterior results, posterior
mean-of-median and 95% highest posterior density
(HPD95%) values were presented.

As expected, the results show the –G model extracts
no information regarding the root age, so its posterior
distribution equals its prior distribution, mean-of-
median ≈499 (Fig. 6a). In contrast, the +G model
infers the mean-of-median root age 243 with a HPD95%
interval width of 436, improving accuracy and precision
in general.

Estimated divergence time accuracy was assessed with
the statistic

d=
∑

i

ai −a(true)
i

a(true)
i

(2)

where a is a posterior sample of the node age vector
and a(true) is the true node age vector known through
simulation. When a perfectly estimates a(true) for all node
ages, d=0. When estimated node ages are too young (on
average), d<0, and when too old, d>0. Inference under
+G infers an mean d=0.19 with a HPD95% interval
width of ≈1.26, while −G performs substantially worse
with d=0.92 and width ≈2.75 (Fig. 6b). Posterior
estimates generally favored short- over medium-
and long-distance dispersal as was assumed under
simulation (Fig. 6c). Dispersal mode parameter estimates
were (bs,bm,bl)= (0.766,0.229,0.003), respectively,
summarized as median-of-medians across simulated
replicates.

Empirical: Testudines
To assess the accuracy of the method, I performed a

biogeographic dating analysis on extant turtle species
(Testudines). Extant turtles fall into two clades, Pleurodira,
found in the Southern hemisphere, and Cryptodira,

http://revbayes.com
http://dx.doi.org/10.5061/dryad.dq666
http://github.com/mlandis/biogeo_dating
http://github.com/mlandis/biogeo_dating
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FIGURE 5. Dispersal graph properties summarized over time. Communicating classes of the short-distance dispersal graph (a) and medium-
distance dispersal graph (b) are shown. Each of 25 areas is represented by one horizontal line. Colors of areas (online figure only) match those
listed in Supplementary Figure S2 (available on Dryad). On the vertical axis, areas that share a communicating class are grouped into horizontal
bands (multiple lines) whose width is proportional to the number of areas in the communicating class. Vertical lines running between horizontal
bands indicate transitions of areas joining or leaving communicating classes, that is, due to paleogeographical events. Communicating classes
are arranged vertically to appear horizontally stable with respect to time, but their vertical order and relative positioning is otherwise arbitrary.
When no transition event occurs for an area entering a new epoch, the line is interrupted with a gap. The two arrows mark the break-up of
West Gondwana, first recorded in the short-distance dispersal graph (a) at 120 Ma, then later in the medium-distance dispersal graph (b) at 90
Ma. c) Number of communicating classes: the black line corresponds to the short-distance dispersal graph (a), the dotted line corresponds to
medium-distance dispersal graph (b), and the gray line corresponds to the long-distance dispersal graph, which always has one communicating
class. Section “Paleogeography, Dispersal Graphs, and Markov Chains” explains how communicating classes are determined.

found predominantly in the Northern hemisphere.
Their modern distribution shadows their biogeographic
history, where Testudines is thought to be Gondwanan
in origin with the ancestor to cryptodires dispersing
into Laurasia during the Jurassic (Crawford et al. 2015).
Since turtles are among the best preserved vertebrates in
the fossil record, their phylogeny and divergence times
have been profitably analyzed and reanalyzed by various
researchers (Hugall et al. 2007; Joyce 2007; Danilov and
Parham 2008; Alfaro et al. 2009; Dornburg et al. 2011;
Joyce et al. 2013; Sterli et al. 2013; Warnock et al. 2015). This
makes them ideal to assess the efficacy of biogeographic
dating, which makes no use of their replete fossil record:
if both biogeography-based and fossil-based methods
generate similar results, they co-validate each others’

correctness (assuming they are not both biased in the
same manner).

To proceed, I assembled a moderately sized dataset.
First, I aligned cytochrome B sequences for 185 turtle
species (155 cryptodires, 30 pleurodires) using MUSCLE
3.8.31 (Edgar 2004) under the default settings. Assuming
the 25-area model presented in section “Adjacent-Area
Terrestrial Dispersal Graph”, I consulted GBIF (gbif.org)
and IUCN Red List (iucnredlist.org) to record the area(s)
in which each species was found. Species occupying
multiple areas were assigned ambiguous tip states
for those areas. Missing data entries were assigned
to the six sea turtle species used in this study to
effectively eliminate their influence on the (terrestrial)
biogeographic process. To simplify the analysis, I

http://gbif.org
http://iucnredlist.org
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TABLE 1. Model parameters

Parameter X Simulation f (X) sim. value Empirical f (X)

Tree Root age r Uniform(0,1000) 250 Uniform(0,540) or
Uniform(155.7,251.4)

Time tree � UniformTimeTree(r) BD(�=0.25,�=0.15) UniformTimeTree(r)
Molecular Length e Uniform(0,1000) 2.5 Uniform(0,1000)

Subst. rate �x e/r Determined (0.01) e/r
Exch. rates rx Dirichlet(10) From prior Dirichlet(1)
Stat. freqs �x Dirichlet(10) From prior Dirichlet(1)
Rate matrix Qx GTR(rx,�x) Determined GTR(rx,�x)
Branch rate mult. �x,i Lognorm(ln�x −�2

x/2,�x)
Branch rate var. �x Exponential(0.1)
+	4 	x Gamma(
,
)
+	4 hyperprior 
 Uniform(0,50)

Biogeo. Atlas-graph G(t) –G or +G +G +G
Biogeo. rate �z �x10sz Determined (0.1) �x10sz

Biogeo. rate mod. sz Uniform(-3, 3) 1.0 Uniform(-3, 3)
Dispersal mode (bs,bm,bl) Dirichlet(1) (1000,10,1)/1011 Dirichlet(1,1,1) or

Dirichlet(100,10,1)
Dispersal rates rz(t)

∑
i∈{s,m,l}biGi(t) Determined

∑
i∈{s,m,l}biGi(t)

Stat. freqs �z (1,...,1)/25 (1,...,1)/25 (1,...,1)/25
Rate matrix Qz(t) GTR(rz(t),�z) Determined GTR(rz(t),�z)

Notes: Model parameter names and prior distributions are described in the manuscript body. All empirical priors were identical to simulated
priors unless otherwise stated. Priors used for the empirical analyses but not simulated analyses are left blank. Determined means the parameter
value was determined by other model parameters.

a) b) c)

FIGURE 6. Posterior estimates for simulated data. a) Posterior estimates of root age. The true root age for all simulations is 250 Ma (dotted
vertical line). b) Posterior estimates of relative node age error (Equation 2). The true error term equals zero. Both a and b) paleogeographically
non-informed (–G) analyses are on the top half, and paleogeographically informed (+G) analyses are on the bottom. Each square marks the
posterior mean root age estimate with the HPD95% credible interval. Estimates whose credible interval did not contain the true value are
darkened for visibility. c) Posterior estimates of dispersal mode proportions for the +G simulations projected onto the unit 2-simplex. The filled
square (near “short”) gives the true value, and the empty circles give posterior medians.



138 SYSTEMATIC BIOLOGY VOL. 66

0 100 200 300 400 500

0.
00

0
0.

00
4

0.
00

8
0.

01
2

root age

D
en

si
ty

(r
oo

t a
ge

)
Uniform(0, 540), +G, flat
Uniform(0, 540), +G, short
Uniform(0, 540), G
Uniform(156, 251), +G, flat
Uniform(156, 251), +G, short
Uniform(156, 251), G

FIGURE 7. Posterior root age of turtles by biogeographic dating. Six root age posterior estimates were computed using biogeographic dating,
each using variations on flat or short-biased priors for dispersal mode weight parameters. Black densities assumed no knowledge of fossils with
a Uniform(0, 540) root age prior. Gray densities follow Joyce et al. (2013) and assumed Uniform(155.7, 251.4) as a root node age calibration. Line
types indicate priors on dispersal mode (solid: flat prior, dashed: short-biased, dotted: paleogeography ignored).

assumed the species tree topology was fixed according
to Guillon et al. (2012), which was chosen for its high
species coverage. All speciation times were treated as
random variables to be estimated. The tree topology and
biogeographic states are shown in Supplementary Fig. S4
available on Dryad.

Like the simulation study, my aim is to show that
the paleogeographically aware +G model identifies the
root age in units of absolute time. To reiterate, the
posterior root age should be identical to the prior root
age when the model cannot inform the root age. If
the prior and posterior differ, then the data under the
model are informative. The root age was constrained to
Uniform(0, 540), forbidding the existence of Precambrian
turtles. To improve biological realism, I further relaxed
assumptions about rate variability for the molecular
model of evolution, both among sites (Yang 1994) and
across branches (Drummond et al. 2006; Lepage et al.
2007; Table 1).

Biogeographic dating infers a posterior median
root age of 219.0 with HPD95% credible interval of
(134.9, 358.3) (Fig. 7). This is consistent with current
root age estimates informed from the fossil record
(Fig. 8). The posterior median of dispersal mode is
(bs,bm,bl)= (0.42,0.56,0.02), with short- and medium-
distance dispersal occurring at roughly equal rates
and long-distance dispersal being rare by comparison.
Biogeographic events occurred at a ratio of about
6:1 when compared to per-site molecular substitution
events (posterior median: �x =1.9E−3,�z =1.1E−2).
The posterior tree height mean measured in expected
number of dispersal events is 2.3 with HPD95% (1.5, 3.0),
that is, as a clade-wide average, the current location of
each taxon is the result of about two dispersal events.

The flat prior distribution for competing dispersal
modes is Dirichlet(1, 1, 1) and does not capture the
intuition that short-distance dispersal should be far
more common than long-distance dispersal. I encoded

this intuition in the dispersal mode prior, setting the
distribution to Dirichlet(100, 10, 1), which induces an
expected proportion of 100:10:1 short-, medium-, and
long-distance dispersal events. After reanalyzing the
data with the short-biased dispersal prior, the posterior
median and HPD95% credible interval for the root age
were estimated to be, respectively, 208.3 and (99.5,290.2)
(Fig. 7).

Biogeographic dating is compatible with fossil dating
methods, so I repeated the analysis for both flat and
informative prior dispersal modes while substituting
the Uniform(0, 540) prior on root age calibration for
Uniform(155.7, 251.4), following Joyce et al. (2013).
Although additional fossil node calibrations were
available, they were not used to avoid inducing a
nonuniform prior density for the root age (Warnock
et al. 2015). When taking biogeography into account
with the root age calibration, the model more strongly
disfavors post-Pangaean origins for the clade than
when biogeography is ignored, but the effect is mild
(Fig. 7). Posterior distributions of root age were relatively
insensitive to the flat and short-biased dispersal mode
priors, with posterior median and credible intervals of
203.4 (163.9,251.2) and 205.8 (165.0,251.2), respectively.
Because of the design of the model, it is unsurprising
that the root node calibration prior effectively truncates
the full, uncalibrated posterior density.

All posterior root state estimates favored South
America for the paleogeographically informed analyses
(Fig. 9a). Although this is in accord with the root
node calibration adopted from Joyce et al. (2013)—
Caribemys oxfordiensis, sampled from Cuba, and the
oldest described crown group testudine—the fossil
is described as a marine turtle, so the accordance
may simply be coincidence, especially in light of the
complicated history of the Caribbean Plate. In contrast,
the paleogeographically naive models support a
Southeast Asian origin of Testudines, where, incidentally,
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FIGURE 8. Root age comparison. Root age estimates are presented both for analysis conducted for this manuscript and as reported in the
literature. Existing estimates are as reported in Sterli et al. (2013) and supplemented recently reported results. Points and whiskers correspond
to the point estimates their confidence intervals. The six left estimates were computed using biogeographic dating, each using variations on flat
or short-biased priors for key parameters. Two of these analyses ignore paleogeography (–G) so the posterior root age is the uniform prior root
age, whose mode (not shown) equals all values supported by the prior. Hugall et al. (2007) report ages for analyses using amino acids (aa) and
nucleotides (nt). Warnock et al. (2015) report many estimates while exploring prior sensitivity, but only uniform prior results are shown here.

Southeast Asia is the most frequently inhabited area
among the 185 testudines. For the analysis with a flat
dispersal mode prior and no root age calibration, all
root states with high posterior probability appear to
concur upon the posterior root age density (Fig. 9b),
that is, regardless of conditioning on the northern
area of South America or either of the two southern
areas in North America as a root state, the posterior
root age density is roughly equal. Similarly, poorly
supported areas of origin contribute almost nothing to
the root age density. The joint-marginal density shared
by the root age and root state variables bears a strong
signature of a unimodality, for example, young and old
origination times do not support conflicting areas of
origin. Ancestral biogeographic state estimates for the
entire clade are available as Supplementary Figs. S5–S7.

DISCUSSION

A major obstacle preventing the probabilistic union
of paleogeographical knowledge, biogeographic
inference, and divergence time estimation has been
methodological, which I have attempted to redress
in this article. The intuition justifying prior-based
fossil calibrations (Parham et al. 2012), that is, that
fossil occurrences should somehow inform divergence
times, has recently been formalized into several models
(Pyron 2011; Ronquist et al. 2012; Heath et al. 2014).
Here, I present an analogous treatment for prior-based
biogeographic calibrations, that is, that biogeographic
patterns of modern species echo time-calibrated
paleobiogeographic events, by describing how epoch
models (Ree et al. 2005; Ree and Smith 2008; Bielejec
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FIGURE 9. Root state estimates. a) Posterior probabilities of root state are given for the six empirical analyses. b) Joint-marginal posterior
probabilities of root age and root state are given for the empirical analysis without a root calibration and with a flat dispersal mode prior. Root
ages are binned into intervals of width 20.

et al. 2014) are informative of absolute divergence
times. Briefly, I accomplished this using a simple
time-heterogeneous dispersal process (Sanmartín et al.
2008), where dispersal rates are piecewise constant, and
determined by a graph-based paleogeographical model
(section “Adjacent-Area Terrestrial Dispersal Graph”).
The paleogeographical model itself was constructed
by translating various published paleogeographical
reconstructions (Supplementary Table S2 available on
Dryad) into a time-calibrated vector of dispersal graphs
(Fig. 3 and Supplementary Fig. S8 available on Dryad).
Because area adjacencies are abiotic paleogeographical
features, and because the biogeographic model estimates
how severely paleogeographic adjacency constrains
species dispersal, the model is generally appropriate for
use with other terrestrial clades.

Through simulation, I showed that biogeographic
dating identifies clade age from the rates of molecular
and biogeographic character change. Following that,
the simulation framework could easily be extended
to investigate for what phylogenetic, paleogeographic,
and biogeographic conditions one is able to reliably
extract information for the root age. For example,
a clade with taxa invariant for some biogeographic
state would contain little to no information about root
age, provided the area has always existed and had
a constant number of dispersal edges over time. At
the other extreme, a clade with a very high dispersal
rate or with a proclivity toward long-distance dispersal
might provide little information due to signal saturation
(Supplementary Figs. S2e,f available on Dryad). The
breadth of applicability of biogeographic dating will
depend critically on such factors, but because we do

not expect to see closely related species uniformly
distributed about Earth nor in complete sympatry, that
breadth may not be so narrow.

After validating the method through simulation, I
tested whether divergence times might be estimated
from extant taxa in an empirical system, Testudines.
I assumed a flat root age calibration prior for the
origin time of turtles: the posterior root age was
also flat when paleogeography was ignored, but
Pangaean times of origin were strongly preferred
when dispersal rates conditioned on paleogeography
(Fig. 7). Under the uninformative prior distributions
on root age, biogeographic dating estimated turtles
originated between the Late Devonian (358 Ma) and
Early Cretaceous (135 Ma) epochs, with a posterior
median age of 219 Ma. Under an ignorance prior where
short-, medium-, and long-distance dispersal events
have equal prior rates, short- and medium-distance
dispersal modes are strongly favored over long-distance
dispersal. Posterior estimates changed little by informing
the prior to strongly prefer short-distance dispersal. Both
with and without root age calibrations, and with both flat
and informative dispersal mode priors, biogeographic
dating placed the posterior median origin time of turtles
at approximately 220–200 Ma, which is consistent with
fossil-based estimates (Fig. 8), albeit with less precision.

The increased uncertainty in the root age estimates
under biogeographic dating may be caused by any
combination of possible factors. First, in the absence
of fossils, biogeographic events are historical and
not observed directly. Through inference, all possible
biogeographic scenarios are assigned plausibility
in terms of their likelihoods, which inherently
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introduces uncertainty that any one history occurred. By
comparison, turtle fossils can be placed with relatively
high phylogenetic and temporal certainty, and thus
produce more precise estimates. Second, the model and
priors are designed to contrast how well biogeographic
dating (+G) estimates divergence times relative to
a state of complete geographical ignorance (−G).
For example, using a time-homogeneous birth–death
process prior will cause divergence events to follow
a more clock-like pattern, which is likely to be more
realistic than a uniform time tree prior, which has high
node age variance by design. Additional fossil node
calibrations were available for use from Joyce et al.
(2013), but they induce a non-uniform root age prior
distribution (Warnock et al. 2015), and would have
complicated the interpretation of the results. Better
behaved priors are available and recommended for
rigorous empirical investigations. Third, limited by the
availability of genetic data, only 185 of over 300 extant
testudines were used in the analysis. Increased taxon
sampling generally improves ancestral state estimation
(Heath et al. 2008), which will translate to improved
node age estimation for biogeographic dating. Fourth,
process-based dating methods are sensitive to the
underlying model assumptions (O’Reilly et al. 2015),
and, in the section to come, I explore how model
inadequacies might affect biogeographic dating.

Nonetheless, biogeographic dating generates
relatively uncertain root age estimates when compared
to previously published fossil-based results on a
per-study basis. The nine fossil-based estimates were
produced using diverse techniques (Figure 8): four
were estimated with node-dating (Warnock et al. 2015;
Alfaro et al. 2009; Joyce et al. 2013; Dornburg et al.
2011), three with maximum parsimony (Sterli et al. 2013;
Joyce 2007; Danilov and Parham 2008), and two with
penalized likelihood rate smoothing (Hugall et al. 2007;
nucleotides and amino acids). Among these studies,
the average support interval width is approximately
45 Ma while their combined supported root ages are
over three times as wide, ranging from 145 Ma at the
youngest to 324 Ma at the oldest (width 179 Ma). On
this note, at least three of the nine fossil-based root age
estimates must be incorrect due to the poor support
interval overlap. For dating exercises, it is worth noting
that precision should not be maximized for its own sake.
Uncertainty is valuable when it is correctly measured
and guards against being positively incorrect. That said,
the combined fossil-based support interval (145 Ma to
324 Ma) is still 31% narrower than the supported ages
reported across the biogeographic dating analyses (100
Ma to 358 Ma, width 258 Ma, excluding –G analyses).

Exercises comparing performance between fossil-
based and biogeographic-based dating are left for future
work. However, fossil-based and biogeography-based
dating methods should not be viewed as competitive,
since nothing inherently prevents them from being
applied simultaneously to further improve precision. For
example, under the design of the earlier biogeographic
dating analysis, adding a root age prior effectively

truncates the posterior density (Figure 7), thus allowing
fossil-based hypotheses to tune the precision of root age
estimates.

For groups with poor fossil records, biogeographic
dating provides a second hope for dating divergence
times. Since biogeographic dating does not rely on
any fossilization process or data directly, it is readily
compatible with existing fossil-based dating methods
(Figure 7). When fossils with geographic information are
available, researchers have shown fossil taxa improve
biogeographic inferences (Moore et al. 2008; Mao
et al. 2012; Nauheimer et al. 2012; Wood et al. 2012;
Meseguer et al. 2015). In principle, the processes of
morphological and biogeographic evolution should
guide placement of fossils on the phylogeny, and the
age of the fossils should improve the certainty in
estimates of ancestral biogeographic states (Slater et al.
2012), on which biogeographic dating relies. A joint
tip-dated and biogeography-dated analysis under the
fossilized birth–death process (Gavryushkina et al. 2015;
Zhang et al. 2015) would produce improved node age
estimates in a methodologically consistent framework.
Joint inference of divergence times, biogeography, and
fossilization stands to resolve recent paleobiogeographic
conundrums that may arise when considering inferences
separately (Beaulieu et al. 2013; Wilf and Escapa 2014).

Model Inadequacies and Future Extensions
The simulated and empirical studies demonstrate

biogeographic dating improves divergence time
estimates, with and without fossil calibrations, but many
shortcomings in the model remain to be addressed.
When any model is misspecified, inference is expected to
produce uncertain or, worse, spurious results (Lemmon
and Moriarty 2004), and biogeographic models are not
exempted. Because the biogeographic model assumed
in the analysis is so very simple, a rigorous battery of
simulation studies must be carried out to assess the
method’s robustness when faced with model violation.
To this end, I discuss some of the most apparent model
misspecifications below.

Anagenetic range evolution models that properly
allow species to inhabit multiple areas should improve
the informativeness of biogeographic data. Imagine taxa
T1 and T2 inhabit areas ABCDE and FGHIJ, respectively.
Under the simple model assumed in this article, the
tip states are ambiguous with respect to their ranges,
and for each ambiguous state only a single dispersal
event is needed to reconcile their ranges. Under a pure
anagenetic range evolution model (Ree et al. 2005), at
least five dispersal events are needed for reconciliation.
Additionally, some extant taxon ranges may span ancient
barriers, such as a terrestrial species found both north
and south of the Isthmus of Panama. When multiple-
area ranges are used, this situation almost certainly
requires a dispersal event to have occurred after the
isthmus was formed. For single-area species ranges
coded as ambiguous states, the model effectively takes
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the weighted average of the lineage being only north and
being only south of the isthmus, so information about
the effects of the paleogeographical event on divergence
times will be relatively diluted.

Any model where the diversification process
and paleogeographical states (and events) are
correlated or co-occuring will obviously improve
divergence time estimates so long as that relationship
is biogeographically realistic. Although the repertoire
of cladogenetic models is expanding in terms of
types of transition events, they do not yet account for
geographical features, such as continental adjacency or
geographical distance. Incorporating paleogeographical
structure into cladogenetic models of geographically
isolated speciation, such as vicariance (Ronquist 1997),
allopatric speciation (Ree et al. 2005; Goldberg et al.
2011), and jump dispersal (Matzke 2014), is crucial
not only to generate information for biogeographic
dating analyses, but also to improve the accuracy of
ancestral range estimates. Ultimately, cladogenetic
events are state-dependent speciation events, so the
desired process would model range evolution jointly
with the birth–death process (Maddison et al. 2007;
Goldberg et al. 2011), but inference under these
models for large state spaces is currently infeasible.
Regardless, any cladogenetic range-division event
requires a widespread range, which in turn implies it
was preceded by dispersal (range expansion) events.
Thus, if we accept that paleogeography constrains the
dispersal process, even a simple dispersal-only model
will extract dating information when describing a far
more complex evolutionary process.

That said, the simple paleogeographical model
described herein (section “Adjacent-Area Terrestrial
Dispersal Graph”) has many shortcomings itself. It is
only designed for terrestrial species originating in the
last 540 Ma. The number of epochs and areas was
limited by my ability to comb the literature for well-
supported paleogeological events, while constrained
by computational considerations (see Supplementary
Material available on Dryad). The timing of events was
assumed to be known perfectly, despite the literature
reporting ranges of estimates. Rates of dispersal between
areas are classified into short, medium, and long
distances, but using necessarily practical and subjective
criteria. Factors such as temperature, precipitation,
ocean currents, ecoregion type, distances between
areas, sizes of areas, carrying capacities, etc. certainly
affect dispersal rates between areas in terms of
magnitude and symmetry, and in terms of the stationary
frequencies per epoch, but were ignored. These factors
may be integrated into the existing paleogeographical
model so long as the data are available. From
the modeling perspective, the rate matrix equation
(Equation 1) can accommodate additional layers of
historical features, such as those listed above, through
additional weight parameters and rate matrix vectors.
Regarding how to incorporate those features, Sanmartín
et al. (2008) suggest how the biogeographic rate matrix
may encode various celebrated colonization models

(MacArthur and Wilson 1967; Hanski 1994). Finally,
these colonization rates are likely to interact with the
evolving life history traits intrinsic to each lineage,
such as flightedness or cold tolerance, as modeled by
Sukumaran et al. (2015). All of these factors can and
should be handled more rigorously in future studies by
modeling these processes and factors as part of a joint
Bayesian analysis (Höhna et al. 2014).

Despite these flaws, defining the paleogeographical
model serves as an exercise to identify what features
allow a biogeographic process to inform speciation
times. Identifying significant areas and epochs remains
challenging, where presumably more areas and epochs
are better to approximate continuous space and time,
but this is not without computational challenges
(Ree and Sanmartín 2009; Webb and Ree 2012; Landis
et al. 2013). Dispersal barriers are clearly clade-
dependent and depend on various life history traits,
for example, benthic marine species dispersal would
be poorly modeled by the terrestrial graph. Classifying
dispersal edges into dispersal mode classes may be
made rigorous using clustering algorithms informed
by paleogeographical features, or even abandoned
in favor of modeling rates directly as functions of
paleogeographical features like distance. Rather than
fixing epoch event times to point estimates, one might
assign empirical prior distributions based on collected
estimates. Ideally, paleogeographical event times and
features would be estimated jointly with phylogenetic
evidence, which would require interfacing phylogenetic
inference with paleogeographical inference. Following
Sanmartín et al. (2008), multi-clade biogeographic
analyses could be used to generate the statistical
power necessary to obtain reliable paleogeographical
estimates. This would be a profitable, but substantial,
interdisciplinary undertaking.

Conclusion
Historical biogeography is undergoing a probabilistic

renaissance, owing to the abundance of georeferenced
biodiversity data now hosted online and the explosion
of newly published biogeographic models and methods
(Ree et al. 2005; Ree and Smith 2008; Sanmartín et al.
2008; Lemmon and Lemmon 2008; Lemey et al. 2010;
Goldberg et al. 2011; Webb and Ree 2012; Landis et al.
2013; Matzke 2014; Sukumaran et al. 2015; Tagliacollo
et al. 2015). Making use of these advances, I have shown
how patterns latent in biogeographic characters, when
viewed with a paleogeographic perspective, provide
information about the geological timing of speciation
events. The method conditions directly on biogeographic
observations to induce dated node age distributions,
rather than imposing (potentially incorrect) beliefs about
speciation times using node calibration densities, which
are data-independent prior densities. Biogeographic
dating may present new opportunities for dating
phylogenies for fossil-poor clades since the technique
requires no fossils. This establishes that historical
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biogeography has untapped practical use for statistical
phylogenetic inference, and should not be considered of
secondary interest, only to be analyzed after the species
tree is estimated.
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