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Abstract.—Gaussian processes, a class of stochastic processes including Brownian motion and the Ornstein–Uhlenbeck
process, are widely used to model continuous trait evolution in statistical phylogenetics. Under such processes, observations
at the tips of a phylogenetic tree have a multivariate Gaussian distribution, which may lead to suboptimal model specification
under certain evolutionary conditions, as supposed in models of punctuated equilibrium or adaptive radiation. To consider
non-normally distributed continuous trait evolution, we introduce a method to compute posterior probabilities when
modeling continuous trait evolution as a Lévy process. Through data simulation and model testing, we establish that
single-rate Brownian motion (BM) and Lévy processes with jumps generate distinct patterns in comparative data. We then
analyzed body mass and endocranial volume measurements for 126 primates. We rejected single-rate BM in favor of a
Lévy process with jumps for each trait, with the lineage leading to most recent common ancestor of great apes showing
particularly strong evidence against single-rate BM. [Continuous traits; saltational evolution; Lévy processes; Bayesian
inference.]

Morphological variation in continuous characters,
such the body mass of theropod or the height of
kelp, is one of the most visible examples of the
diversity of life on Earth. A number of theoretical
frameworks have been put forth to explain this
variety of sizes and shapes seen in the natural world
(Darwin 1859, Simpson 1953, Eldredge and Gould
1972, Stanley 1975). Gaussian processes—a class of
stochastic processes that includes Brownian motion
(BM) and the Ornstein-Uhlenbeck process—have been
used extensively to model continuous trait evolution, for
example, body mass evolution (Freckleton et al. 2003) or
gene expression level evolution (Brawand et al. 2011).
These processes are a natural model for continuous
character evolution because they are the continuum limit
of a broad range of discrete-time character evolution
models (Cavalli-Sforza and Edwards 1967; Lande 1976;
Felsenstein 1985).

However, not all discrete-time models have a Gaussian
process as their limit; many evolutionary processes
may result in changes in a continuous character too
abrupt to be accounted for by any Gaussian process.
For example, rapid changes in population size can
dramatically affect rates of allele fixation, and thus
introduce abrupt changes in quantitative traits (Lande
1976). The ecological release of selective constraints may
induce an adaptive radiation that increases disparity
unevenly across a clade (Simpson 1953; Stanley 1975).
Through cladogenesis under a punctuated equilibrium
model of trait evolution, divergence events are paired
with sudden trait change (Eldredge and Gould 1972).
If cladogenetic evolutionary processes are present,
continuous trait patterns seen in extant taxa may mislead

inference due to speciation events “hidden” by extinction
events (Bokma 2002).

Two main routes have been taken to account for the
extra variation that these micro- and macro-evolutionary
processes produce. One approach pioneered by O’Meara
et al. (2006) is to allow for shifts in the rate of BM in
different places on the phylogeny. This method is similar
in spirit to models of rate shifts in molecular evolution
(Thorne et al. 1998; Huelsenbeck et al. 2000; Drummond
and Suchard 2010). A number of refinements have
since been proposed, such as the use of reversible
jump Markov chain Monte Carlo (MCMC) to infer
the timing and intensity of rate shifts (Eastman et al.
2011), which identified rate shifts in the evolution of
primate body mass. Harmon et al. (2010) introduced
an “early-burst” process to model rapid trait evolution
following cladogenesis in which the rate of BM decreases
exponentially along a branch, such that the rate of change
is fastest immediately when a new lineage diverges and
then decreases as the lineage grows older. For size and
shape data across 49 clades of animals, they reported
that their early-burst model was favored in two data sets
over BM and Ornstein–Uhlenbeck processes. Although
these models relax the time-homogeneity assumption of
Gaussian process models, they remain fundamentally
gradual, in the sense that the changes in traits cannot
be too large in a short period of time. This results in
the existence of intermediate forms, the hallmark of
gradualism.

The other route explicitly models non-gradual
evolution by augmenting BM with a process of
“jumps.” In a seminal work on models of continuous
trait evolution, Hansen and Martins (1996) compared

193

 by guest on June 5, 2016
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


[13:24 28/1/2013 Sysbio-sys086.tex] Page: 194 193–204

194 SYSTEMATIC BIOLOGY VOL. 62

the covariance structure of models of punctuated
equilibrium with other models of phenotypic trait
evolution and found that one could not distinguish
between punctuational models and BM models from
covariance alone. Bokma (2008) described a method to
identify punctuated evolution by modeling continuous
trait evolution as the sum of BM and normally
distributed jumps resulting from speciation events. The
Bokma model accounts for hidden speciation events
by first estimating the speciation and extinction rates,
then conditioning on the rates as part of a Bayesian
MCMC analysis. In a study on mammalian body mass
evolution, this model inferred that cladogenetic, rather
than anagenetic, processes produced the majority of trait
diversity we see today (Mattila and Bokma 2008).

However, jumps in trait evolution may not be
linked directly to cladogenesis. Using a pure-jump
model, Uyeda et al. (2011) identified a once-per-
million-year jump periodicity in vertebrate evolution
by modeling trait evolution as the sum of white noise
and normally distributed jumps drawn at the times
of a Poisson process. Such pure-jump models may be
appropriate for traits that are thought to have weak
or no gradual evolution component, such as gene
expression, which may depend only on the discrete
events of transcription factor binding site recruitment
and degradation. Khaitovich et al. (2005) introduced a
pure-jump model of evolution in which gene expression
levels evolve through jumps drawn from a skewed
normal distribution at the times of a Poisson process.
They reported evidence of skewness in primate gene
expression evolution, a biologically interesting signal
that could not have been explained by simple BM models
(also see Chaix et al. 2008).

This evidence of jumps motivates us to introduce
a class of models to account for the wide range of
modes of non-gradual evolution. Both BM and the
compound Poisson processes of Khaitovich et al. (2005)
and Uyeda et al. (2011) (but not the Ornstein-Uhlenbeck
process) are members of a broader class of stochastic
processes whose motion may be thought of as “drift
and diffusion with jumps,” namely the class of Lévy
processes. A Lévy process is the sum of 3 components:
a directional drift (also called trend in the biology
literature, not to be confused with genetic drift), a BM,
and a pure-jump process. The last component allows
Lévy processes to have jumps in their sample paths
and, in the context of continuous trait evolution, account
for abrupt shifts in continuous characters that pure
diffusion models cannot easily explain. Qualitatively,
these jumps give the distribution of trait change “fat
tails,” reflecting that there is a higher probability of
larger amounts of trait change than under a BM. In
the mathematical finance literature, Lévy processes
have been successfully used to capture the “fat-tailed”
behavior of stock prices (Li et al. 2008). We developed
a Bayesian method that determines whether a Lévy
process with jumps explains the data better than a
single-rate BM and effectively infers the parameters of
that Lévy process.

MODEL

Lévy Processes
Stochastic processes with stationary and independent

increments whose sample paths are right continuous
with left limits are called Lévy processes. We will
highlight the key properties of this class of processes and
state some important results. Kallenberg (2010, Chapter
15) provides a more detailed and technical exposition.

Let {Xt,t>0} be a Lévy process. There are 2 equivalent
ways of characterizing Xt, by its transition density P(Xt =
y|X0 =x), or by its characteristic function, given by

�(k;t)=E

(
eikXt |X0 =0

)
, (1)

where i=√−1 is the imaginary unit and E(·) is the
expected value. Note that k is the variable on which the
characteristic function acts. As an example, the transition
density of a BM is

P(Xt =y|X0 =x)= 1√
2��2t

e− (y−x)2

2�2t , (2)

so the corresponding characteristic function is given by

�(k;t) =
∫ ∞

−∞
1√

2��2t
e− y2

2�2t eikydy

= e−t 1
2 �2k. (3)

A result known as the Lévy–Khinchine representation
asserts that all Lévy processes have characteristic
functions of the form

�(k;t)=exp
{

t
(

aik− 1
2
�2k2 +

∫ (
eikj −1−ikjI|j|<1

)
�(dj)

)}
,

(4)
where a and �2 are constants and �(·) is the so-called Lévy
measure. Intuitively, the Lévy–Khinchine representation
provides a mathematical decomposition of a Lévy process
into its 3 constituent parts:

1. A constant directional drift (or trend) with rate a.

2. A BM with rate �2.

3. A pure-jump process that draws jumps from the
Lévy measure �(·).

The processes we consider have no long-term directional
trend, so a=0. To get a better understanding of the Lévy
measure, one can imagine that the process has probability
�(dj)dt of making a jump of size j during the time dt. If
there are no jumps, then � is identically 0 and Equation (4)
becomes Equation (3). This shows that the only Lévy
process with continuous sample paths is a single-rate BM.

Using the Lévy–Khinchine formula, it is possible to
compute the moments of a Lévy process, assuming that
they exist. Because we will only consider symmetric Lévy
processes, we are only interested in the process’ variance
and excess kurtosis, the latter of which is a measure
of the relative frequency of large evolutionary changes
compared with a BM. These 2 moments are given by

V(t)=E(X2
t )=−�(2)(0;t) (5)
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a)

b)

c)

FIGURE 1. Sample paths of Lévy processes without BM (left panel) and their corresponding Lévy measures (right panel). Compound Poisson
process with normally distributed jump JN (a) paths were sampled with parameters �=2, and �=1 (solid line) and �=20, and �=0.3 (dashed
line). VG (b) paths were sampled with parameters �=0.1, and 	=0.2 (solid line) and �=1, and 	=0.6 (dashed line). AS (c) paths were sampled
with parameters 
=1.5, and �=0.1 (solid line) and 
=0.9, and �=0.005 (dashed line).

and

K(t)= E(X4
t )

V(t)2 −3= �(4)(0;t)
V(t)2 −3, (6)

where �(n) is the nth derivative of �.

Three Examples of Lévy Processes
In addition to a single-rate BM, we implemented 3

different models that are representative of the range of
behavior possible with Lévy processes. These models are
a compound Poisson process with normally distributed
jumps (jump normal, abbreviated JN), the variance
gamma (VG) process, and the 
-stable (AS) process. To
gain an intuition for the behavior of each process, Figure 1
shows representative pure-jump sample paths and the
corresponding jump measures for JN, VG, and AS, whose
properties we examine in turn. Note, to accentuate the
flavor of each jump measure under each parameterization
in Figure 1, the BM rate was assigned to �=0. Parameters
of each model are summarized in Table 1.

The compound Poisson process—The JN model has Lévy
measure

�(dj)=�
1√

2��2
e− j2

2�2 dj.

With rate �, the process makes jumps with values
drawn from a centered normal distribution with standard
deviation �. As Figure 1a shows, the paths of the JN process
are characterized by periods of stasis interrupted by bursts
of rapid change. Looking at the Lévy measure, a process
with more jumps will have a taller Lévy measure while a
process with larger jumps will have a fatter Lévy measure.
The transition density of the JN process with no BM is

TABLE 1. Model parameters and interpretations for all implemented
models

Model Parameter Interpretation

Brownian motion (BM) � Rate of BM

� Rate of BM
Jump normal (JN) � Rate of jumps

� Standard deviation of jump size

� Rate of BM
Variance gamma (VG) � Relative rate of large jumps

	 Size of jumps

� Rate of BM

-stable (AS) 
 Relative rate of small jumps

� Size of jumps

known and is given by

P(Jt = j|J0 =0,�,�)=
∞∑

n=0

(�t)n

n! e−�t 1√
2�n�2

e− j2

2n�2 . (7)

The variance and excess kurtosis of a process with both
BM, with rate �2, and JN motion are

V(t)= (�2 +��2)t (8)

and

K(t)= 3��4

(�2 +��2)2t
, (9)

respectively.

The VG process—The VG model has Lévy measure

�(dj)= 1
�|j|e

−
√

2
�	2 |j|

dj.
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Here, 	 controls the size of jumps while � controls the
relative probability of large versus small jumps. The Lévy
measure has infinite mass, and thus the VG process is
infinitely active, meaning that in any finite period of time,
the process makes infinitely many jumps. However, as can
be seen in Figure 1b most of those jumps are arbitrarily
small. When � is large, the VG process only makes very
large or very small jumps.

Like the JN process, the transition density of the VG
process with no BM is known analytically,

P(Jt = j|J0 =0,	,�)= 2
2t−3�

4� �− 2t+�
4�

�(t/�)
√

�	2

(
	2

j2

)−2t+�
4�

×K|t/�−1/2|

⎛
⎝
√

2j2

�	2

⎞
⎠, (10)

where �(·) is the gamma function and K(·) is the
modified Bessel function of the second kind with index
 (Abramowitz and Stegun 1964; Chapters 9 and 10).

The variance and excess kurtosis of a process with both
BM and VG motion are

V(t)= (�2 +	2)t (11)

and

K(t)= 3�	4

(�2 +	2)2t
, (12)

respectively.

The AS process—The AS model has Lévy measure

�(dj)= �


|j|1+

dj,

where � is a scale parameter, controlling the magnitude
of jumps taken and 0≤
≤2 is the so-called stability
parameter. For every 
<2, the Lévy measure has infinite
mass, so the AS process is infinitely active. However,
Figure 1c shows that the behavior of the AS process is
quite different from the VG process. In particular, the AS
process does not experience as strong a trade-off between
small and large jumps as the VG process does. As 
→0,
the tails of the Lévy measure become heavier and heavier,
but the relative proportion of probability for medium-
sized jumps remains nearly constant, as opposed to the VG
process. This is manifested in the fact that the AS process
has infinite pth moment for p>
 when 
<2; thus, the
variance and the excess kurtosis of the process do not exist
for 
<2. In addition, unlike the JN and VG processes, the
transition density is not known in closed form. However,
the characteristic function of the AS process without BM
is known to be

�(k;t)=et|�k|
 , (13)
and so we can make use of the Fourier inversion theorem
to numerically compute the transition density of the AS
process without BM,

P(Jt = j|J0 =0,�,
) = 1
2�

∫ ∞

−∞
e−ikj�(k;t)dk

= 1
2�

∫ ∞

−∞
cos(kj)�(k;t)dk, (14)

where the second equality follows because �(k;t) is real
and even.

METHODS

Inference of Lévy Processes
We use a Bayesian framework to analyze Lévy processes

evolving on a phylogeny. Let p(�) be the prior density for
the parameters of the Lévy process model and L(D|�) be
the likelihood of the observed data given the parameters.
We want to compute the posterior density,

p(�|D)∝L(D|�)p(�). (15)

To compute the likelihood of a Lévy process on
a phylogeny, we use Felsenstein’s pruning algorithm
(Felsenstein 1981). To calculate Li(yi), the likelihood of the
data observed in all species that are descended from node
i, given that the trait value at node i equals yi, we use
the likelihood at the descendent nodes j and k. Letting
{Xt,t>0} be the Lévy process under consideration,

Li(yi |�)=
(∫

P(Xtj =yj |X0 =yi)Lj(yj |�)dyj

)

×
(∫

P(Xtk =yk |X0 =yi)Lk(yk |�)dyk

)
, (16)

where tj and tk are the branch lengths leading to nodes
j and k, respectively. At the root (node 0), we assume
an improper uniform prior for the trait value y0, and we
integrate over all possible values of the root node to obtain

L(D|�)=
∫ ∞

−∞
L0(y0 |�)dy0. (17)

However, the integrals in Equations (16) and (17) are
intractable for most Lévy processes. To get around this,
we exploit the fact that if X is a Lévy process consisting of
a BM with no directional drift and diffusion rate �2, and
a pure-jump process, the Lèvy–Khinchine representation
guarantees that X =B+J, where B is a BM and J is the
pure-jump process, and B and J are independent. Then
conditional on J = j, the transition density of X is given by

P(Xt =y|X0 =x,J = j)= 1√
2��2t

e− ((y−j)−x)2

2�2t . (18)

This follows because the BM has to get to y−j and then the
jump process will do the rest. Thus, conditioned on all the
jumps on the branch leading up to a node, J = {J(n),... ,J(1)}
for a tree with n nonroot nodes, L(D|�,J) is the likelihood
of the data under BM where branch i has branch-specific
offset J(i). Then,

p(�,J|D)∝L(D|�,J)p(J|�)p(�), (19)

where
p(J|�)=

∏
i

P(J(i)
ti

= j(i) |J0 =0,�)

is the joint probability of the jumps along each branch
(determined by the specific jump model adopted).
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We want to integrate over the jumps to get

p(�|D)=
∫

p(�,J|D)dJ, (20)

but this integral remains intractable. Instead, we
approximate the integral by using MCMC to obtain
samples from the joint posterior distribution of the
parameters and the jumps. Marginalizing over the
sampled jumps approximates the integral in the right-
hand side of Equation (20).

To obtain posterior samples of the jumps, we serially
update each branch in a post-order traversal of tree by
proposing a new value J(i)′ from a normal distribution
centered at the current sampled J(i) and with variance
0.5. This variance lead to good mixing for the data
we considered, but should be specified by the user as
appropriate. We then accept or reject the proposed jump
update using the Metropolis–Hastings ratio,

P(Accept J(i)′)= L(D|�,J′)
L(D|�,J)

p(J′ |�)
p(J|�)

,

where J′ ={J(n),...,J(i+1),J(i)′,J(i−1),...,J(1)} is the vector of
jumps with only one branch updated. Note that the
proposal ratio is equal to 1 because of the symmetry of
the normal distribution and the prior ratio is equal to
1 because no parameters are updated. This method is
similar to the path sampling method of Robinson et al.
(2003), in that we use MCMC to sample and integrate over
hidden states (the unobserved jumps).

During the MCMC run, we randomly choose to update
either the jumps or the model parameters. When we
choose to update a model parameter, we randomly choose
a model parameter to update. All parameters except for 

from the AS process are positive and real and so were
assigned scaling proposal distributions. Because 0<
<2,
we use a truncated normal proposal distribution to update

. Parameter updates are accepted or rejected according to
the Metroplis–Hastings ratio,

P(Accept �′)= L(D|�′,J)
L(D|�,J)

p(J|�′)
p(J|�)

p(�′)
p(�)

q(�|�′)
q(�′ |�)

,

where � is the randomly selected parameter, �′ is the
proposed update, and q(·|·) is the proposal distribution.

Data
We log-transformed the male–female means of body

mass, endocranial volume (ECV), and mass-to-ECV ratio
data reported in Isler et al. (2008). The branches of the
phylogeny provided by Isler et al. (2008) were measured
in increments of half-million years. In favor of higher
resolution of branch lengths, we substituted the Isler
et al. phylogeny with the Redding et al. (2010) primate
phylogeny included in the R package auteur (Eastman
et al. 2011). We intersected the Isler et al. data set with
the Redding et al. phylogeny, which resulted in 126 taxa
with data present in the phylogeny. This phylogeny has
1267 myr of total branch and a root height of 65 myr.
The resulting phylogeny was used for all analyses and
simulations reported in this article. The primate data
and phylogeny are hosted on the Dryad data repository
(doi:10.5061/dryad.0n761).

Software Configuration
The software used in this study was programmed in

C++, borrowing code from GNU Scientific Library
(G.P. Contributors 2010) and MrBayes (Ronquist
et al. 2012). The source code may be found at
http://github.com/mlandis/creepy-jerk (Last accessed:
10/29/12). With one exception, all parameters were
assigned half-Cauchy distributions with scale parameters
of 1 as prior densities. Under the AS processes, 0≤
≤2,
so we used a uniform distribution on [0,2] as its prior.
Each posterior distribution was computed by running
MCMC for 2×106 cycles, sampling every 103 cycles,
where the first 105 cycles were discarded as part of the
burn-in. The R package coda (Plummer et al. 2006) was
used to verify MCMC convergence. For the BM, JN, VG,
and AS models, one MCMC run took 0.5, 8, 6, and 48 h,
respectively. This discrepancy results from the fact that,
while the JN and VG models have analytical solutions for
their jump densities, we had to approximate the AS jump
density using time-consuming numerical integration.

Analysis
We characterized how Lévy processes perform in the

context of phylogenetic inference for both simulated data
and real data. We used simulated data to test the accuracy
of parameter inference and quantify the power to reject
BM when the true model is a Lévy process with jumps.
We then analyzed the primate data set to both estimate
parameters and determine whether a BM model is rejected
in favor of a Lévy process with jumps in biological
data. Our analysis examines the aforementioned 4 Lévy
processes: BM, JN, VG, and AS.

To test the BM model, we performed a 3-step procedure
similar to a parametric bootstrap. First, data were analyzed
under a pure BM model, resulting in an estimate of the BM
rate, �2. Then, 20 “jump-absent” data sets were simulated
under BM with the inferred rate. Finally, each simulated
data set was analyzed using a “jump-present” model, and
the average posterior distributions of either the variance
and excess kurtosis (for JN and VG) or the parameter 

(for AS) were compared with the posterior distribution
of those parameters inferred from the original data. Note
that the variance, excess kurtosis, and 
 calculated here do
not describe the data observed at the tips, but rather their
expected values as a function of time, see Equations (8),
(9), (11), and (12).

By inspecting the posterior distribution of the variance
and excess kurtosis for JN and VG between data and
the BM simulations, we determined whether there was
evidence for non-Gaussian evolution. Under the BM
model, the expected excess kurtosis is 0, so if the posterior
of the excess kurtosis placed significant mass away
from 0, we interpreted that as strong evidence for non-
Gaussian evolution. For the AS model, these moments
are not defined; however, when 
=2 the AS process is
equivalent to BM, so if the posterior distribution of 

placed significant mass away from 2, we took that as
evidence for non-Gaussian evolution.

When we were able to reject BM in favor of
a Lévy process with jumps, we characterized the
amount of trait change attributable to those jumps by
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computing the signal-to-noise ratio, defined as the ratio
of the mean to standard deviation, of the posterior
distributions of the sampled jumps for each branch in
the phylogeny. To normalize for branch-length effects,
we further divided all signal-to-noise ratios by their
respective branch lengths. When the signal-to-noise ratio
equals zero, the BM component of the model alone
is capable of producing the observed trait changes
along that branch. A non-zero signal-to-noise ratio was
interpreted as evidence that traits along the branch
evolved faster than could be explained by the model’s BM
component.

RESULTS

Simulated Data
We simulated 20 data sets for each model (JN, VG,

and AS) on the primate phylogeny (see Methods) and
computed posterior distributions under the true model
for each simulated data set. Figure 2 presents boxplots of
the maximum a posteriori estimates for each simulation,
with the horizontal line indicating the true parameter
value. Inference under the JN and AS models recovered
the true parameters with minor error. Inference under
the VG model recovered � and 	 reasonably well while

a)

b)

c)

FIGURE 2. Boxplots of maximum a posteriori model parameter estimates under JN (a), VG (b), and AS (c) for 20 replicates of jump-present
data simulated under each model. The horizontal line shows the true parameter value underlying the simulated data. The true parameters for
JN are �=0.05, �=0.111, and �=0.3. The true parameters for VG are �=0.1, �=3, and 	=0.4. The true parameters for AS are �=0.05, 
=1.5,
and �=0.05.
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a) b)

c)

e)

d)

FIGURE 3. Average posteriors of model summary statistics under JN (a), VG (b), and AS (c) upon simulated data. Solid lines indicate average
posteriors from 20 replicates of jump-present data simulated under the same model. Dashed lines indicate average posteriors from 20 replicates
of jump-absent data simulated under pure BM parameterized with equivalent variance per unit time (�=0.1118, �=0.4050, and �=0.2389 for
analysis by JN, VG, and AS, respectively).

underestimating � by an order of magnitude. The mean
and root mean square errors of the posteriors are recorded
in Supplementary Table S1.

We then applied our method to test for the presence
of jumps to the simulated data sets. The results are

shown in Figure 3. When the true model is either JN
or VG, the inferred variance was approximately equal
between the jump present and BM simulations, but
the excess kurtosis was different. For the AS model,
the inferred 
 deviated significantly from 2 only in the
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a) b)

d) e)

c)

FIGURE 4. Posteriors of model summary statistics under JN upon primate body mass data. (a–c) the model parameters with maximum
a posteriori estimates �̂=0.0596, �̂=0.2497, and �̂=0.2929, respectively. (d and e) The model variance and kurtosis per unit time. Solid lines
indicate posteriors from the empirical data. Dashed lines indicate average posteriors from 20 replicates of jump-absent data simulated under
pure BM parameterized with equivalent variance per unit time (�=0.18).

a) b) c)

FIGURE 5. Posteriors of model summary statistics under AS upon primate ECV data. (a–c) The model parameters with maximum a posteriori
estimates �̂=0.1541, 
̂=1.670, and �̂=0.0698, respectively. Solid lines indicate posteriors from the empirical data. Dashed lines indicate average
posteriors from 20 replicates of jump-absent data simulated under pure BM parameterized with equivalent variance per unit time (�=0.12).

jump-present data. The maximum a posteriori estimates
and 95% highest posterior density intervals may be found
in Supplementary Table S2.

Empirical Data (Primates)
Next, we computed the posterior distributions for body

mass, ECV, and mass-to-ECV ratios for the BM, JN, VG,

and AS models. The maximum a posteriori estimates and
95% highest posterior density intervals for each data set
are provided in Supplementary Table S3. We applied our
test to detect evolution that cannot be explained by BM
to each data set. For the sake of brevity, we only present
results for body mass under the JN model (Figure 4)
and ECV under the AS model (Figure 5), although
several models showed evidence of non-Gaussianity in
the evolution of these traits. For the mass-to-ECV data,
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a) b) c)

FIGURE 6. Posteriors of model summary statistics under JN (a), VG (b), and AS (c) upon primate body mass-to-ECV ratio data. Solid lines
indicate posteriors from the empirical data. Dashed lines indicate average posteriors from 20 replicates of jump-absent data simulated under
pure BM parameterized with equivalent variance per unit time (�=0.096).

no Lévy process with jumps was preferred over BM
(Figure 6). Supplementary Table S4 has more detailed
numbers, including parameter estimates for each model.

For body mass under the JN model, the estimates of both
the jump rate � and the jump size � are nonzero. This is
seen when comparing the posterior estimates of the excess
kurtosis, which are qualitatively different between the BM
simulations and the real data (Figure 4). In addition, the
posterior estimates of the variance of the process were
nearly identical between the BM simulations and the real
data. Together, these provided evidence that the evolution
of primate body mass is not well explained by BM
alone.

For ECV under the AS model, the posterior density
of 
 inferred from the ECV data placed extremely little
mass on 2, while the BM simulations consistently resulted
in maximum a posteriori estimates of 
=2.0 (Figure 5),
evidence of non-Gaussian evolution of primate ECV.

For the mass-to-ECV ratio, we found no remarkable
deviation from BM (Figure 6). This is reflected in the
fact that the posteriors of the kurtosis for the JN and VG
models, as well as the posterior of 
 for the AS model,
were extremely close to the posteriors inferred from the
BM simulations.

Figure 7 shows the primate phylogeny with branches
colored according to their branch-normalized signal-to-
noise ratios. Because we rejected the BM in favor of a
Lévy process with jumps in the body mass and ECV data,
nonzero signal-to-noise ratios are possibly explained by
jumps in trait evolution.

DISCUSSION

Darwin (1859) first proposed that what is now called
continuous character evolution occurs gradually, with
species changing very little over short time periods. Since
then, some (Simpson 1953; Eldredge and Gould 1972;
Stanley 1975) have suggested that evolution occasionally
happens more quickly, with rapid changes in characters
occurring over short periods of evolutionary time.
However, most studies of continuous trait evolution
that use comparative data rely on a Brownian motion
(BM) model. Because the path of a BM is continuous;
that is, the value of the trait at the next moment in time

is necessarily very close to the value of the trait at the
current moment, the most natural interpretation of these
models excludes the possibility of saltational change.
Moreover, even though some saltational processes can
produce the same distribution of tip data as a BM, these
are highly restricted—for example, if jumps occur only at
nodes in the tree that lead to extant taxa.

A natural generalization of BM that allows for paths that
are not strictly continuous is the class of Lévy processes.
The discontinuities in the path can be thought of as
“jumps,” in which the character changes instantly without
any intermediate forms. These jumps approximate rapid
changes in character value over a short time scale and
result in distributions of character change that have “fat
tails”; in statistical literature, distributions with fat tails
are said to be leptokurtic.

We examined 3 specific Lévy processes: a compound
Poisson with normally distributed jumps (JN), variance
gamma (VG), and 
-stable (AS). All processes also
include a BM component, and hence can be interpreted
as modeling gradual evolution punctuated by large,
sudden changes in trait value. The JN process waits an
exponentially distributed amount of time with rate �
before making a jump whose size is drawn from a normal
distribution with standard deviation �. The VG and AS
processes are so-called infinitely active processes that
jump infinitely often. However, most of the jumps are
arbitrarily small, and so the processes are well behaved.
An important difference between the VG and AS processes
is that the AS process is much more likely to take extremely
large jumps, compared with the VG process (as reflected
in the fact that the variance of the AS process is infinite).
For the VG process, the parameter � corresponds to the
rate of very large jumps and the parameter 	 controls
the variance of the jumps that are taken. In the AS
process, the parameter 
 is confined between 0 and 2. As

 approaches 2, the process converges in distribution to
a BM, while as it approaches 0 the process makes larger
jumps more frequently. The parameter � controls the scale
of jumps that are taken.

These processes can be interpreted in a biological
context. The JN process reflects the classic idea of stasis
punctuated by rapid character change and has some
history in the literature (Hansen and Martins 1996; Bokma
2008; Uyeda et al. 2011). VG and AS are more exotic
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FIGURE 7. Branch-normalized signal-to-noise ratios of posterior jump distributions. The primate phylogeny with inferred evolutionary
histories for body mass under JN (a) and for ECV under AS (b) are shown. Branches are shaded according to the quantile containing their branch
length-normalized signal-to-noise ratios. A value of approximately zero indicates trait evolution explained predominantly by the BM component
of the fitted model. Uncolored branches in light gray indicate the tendency for the model to explain trait evolution with jumps valued according
to the figure legend. The arrow points to the most recent common ancestor of great apes.

models; however, they may capture certain aspects of
evolution that would otherwise be impossible to model.
For example, in the Lande (1976) description of the impact
of genetic drift on quantitative traits, trait evolution is a
BM on a time scale determined by the effective population
size: evolution works more slowly in large population
and more quickly in small populations. Because the VG
process arises as a time change of a BM (Madan et al.
1998), it can capture the impact of fluctuating population
size on continuous character evolution. The AS process,
on the other hand, is a natural generalization of BM that
has many of the same features, but allows for fatter tails
and erratic sample paths.

Because analytic computation of the likelihood using
Felsenstein’s pruning algorithm is not possible for the
Lévy processes that we considered, we developed a
MCMC method to estimate the parameters of a Lévy
process. The MCMC algorithm samples possible jump
histories along each branch of the phylogeny. Using data
augmentation for ancestral states, similar in spirit to that
of Robinson et al. (2003), we numerically integrate over
the history of jumps. Because any Lévy process can be
split into a BM and pure-jump components, our method
is applicable to any Lévy process outside of the examples
we considered here.

To determine whether a phylogeny contains sufficient
information to reject single-rate BM in favor of a more

general Lévy process, we conducted simulation studies
using each of the models that we implemented. Figure 2
shows that we were able to recover the parameters of
the JN and AS processes with high accuracy. However,
for the VG process, 	, which controls the variance of the
jumps, was well estimated, but the rate of large jumps, �,
is underestimated. We are uncertain why � is consistently
underestimated but suspect that tree shape plays an
important role.

We then made use of the fact that non-Brownian
Lévy processes have more frequent large deviations in
short time periods than BM. This large deviation is
manifested as excess kurtosis. Using the characteristic
function of a Lévy process (i.e., the Lévy–Khinchine
formula), we calculated the posterior distribution of
the variance and excess kurtosis per unit time.
Because the Gaussian distribution has zero excess
kurtosis, this posterior estimate should be close to
zero when BM is a good model for trait evolution
and as significant mass away from zero when the
trait evolution is non-Gaussian. In the case of the
AS process, the excess kurtosis is not defined and
so we focused our attention on the parameter 
. As

→2, the AS process becomes a BM; thus, if the
posterior distribution of 
 was not very close to 2, the
evolution of the continuous character was inferred to be
non-Brownian.
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We applied our MCMC method to data from 126
primate species (Isler et al. 2008; Eastman et al. 2011)
to uncover evidence of non-Gaussian evolution in a
large group of mammals. For each species, we obtained
measurements of body mass, ECV and also examined
the ratio of mass-to-ECV. For the body mass and ECV
data, we found evidence supporting Lévy process with
jumps over BM and highlighted results under the JN
and AS models, respectively, while the mass-to-ECV ratio
appeared to evolve as a BM. The parameters inferred
for body mass suggest that there is a burst of body size
evolution equivalent to 5–6 myr of gradual evolution
approximately once every 4 myr, which is within the same
order of magnitude of jump periodicity as reported by
Uyeda et al. (2011). ECV evolution was fit by an AS process,
with an intermediate value of 
=1.7, consistent with a
mode of evolution in which character changes are mostly
gradual but punctuated by infrequent, extremely large
jumps.

We also obtained a posterior distribution on the amount
of trait change in excess to the BM component of the Lévy
process on every branch of the phylogeny. Using these
data, we identified branches of the primate phylogeny
that showed evidence for evolution that was faster than
the BM component of the Lévy process could explain.
In Figure 7, we colored the branches of the primate
phylogeny according to the signal-to-noise ratio of the
jump size on that branch, normalized by the branch
length. Because the jumps account for the “extra” distance
that the BM component of the model cannot explain, large
magnitudes of this ratio correspond to branches where
there is relatively strong evidence for trait evolution faster
than the average BM rate on the tree. This signal weakens
deep in the tree, as well as for long branches, although it is
interesting to note that some deep branches show excess
evolution relative to their branch length (e.g., body mass in
the common ancestor of old world monkeys and apes). We
identified several clades that showed strong evidence of
unexpectedly rapid evolution prior to diversification. For
example, the ancestor of the great apes (indicated by an
arrow) shows evidence of unexpectedly rapid evolution
in both body mass and ECV, while evolution in the
ancestors of the Old World and New World monkeys is
well explained by the average rate of BM.

Although our method is able to discriminate between
Gaussian and non-Gaussian evolutionary models, we
were not able to find a test statistic that could discriminate
between the different jump processes. Bayesian methods
of model testing, such as Bayes factors, require computing
the marginal likelihood. However, because of the
stochastic nature of our method for integrating over the
large number of possible jump histories using MCMC,
many methods for estimating the marginal likelihood
of a model are unstable or require an unfeasibly large
number of MCMC cycles. Moreover, since the method
we present does not compute the marginal likelihood of
the parameters alone (with the jumps integrated out),
we cannot use information criteria such as the Akaike
Information Criterion to conduct model fitness tests. In
future work, we plan to implement a Bayesian reversible-
jump MCMC method to distinguish between different
jump models. This will help to identify how much signal
the data contains to single out any particular Lévy process
model of evolution. Although the method presented in
this article conducts inference under time-homogeneous
Lévy processes, nothing prevents the model from being

implemented in a rate-shifting framework (see O’Meara
et al. 2006; Eastman et al. 2011). This will further help to
distinguish jump events from rate-shifting events.

Previous methods describing inference of Lévy
processes in the mathematical finance literature have
shown that it is possible to precisely infer parameters and
accurately choose models with time-series data. However,
the correlation structure of a phylogeny complicates
inference. As noted by Ané (2008), phylogenetic inference
of trait evolution is strongly affected by tree shape
and proposed an effective sample size to gauge how
powerful a given topology is for the inference of model
parameters. Boettiger et al. (2011) explored the impact of
tree shape on the ability for model tests to distinguish BM
models from Ornstein–Uhlenbeck models of continuous
trait evolution. Further examination of how tree shape
affects inference will become particularly important as
increasingly complex models of continuous character
evolution are put forward (Khaitovich et al. 2005; Bokma
2008; Harmon et al. 2010; Eastman et al. 2011).

We face 2 other problems owing to the nature of the
phylogeny and the data being analyzed. To illustrate
these problems, consider that the clearest signal of excess
kurtosis that our model captures lies in terminal sister
nodes, where one lineage has evolved as expected under
BM, but the other lineage has experienced an abnormally
large jump in trait change. First, assigning data with
measurement or sampling error to the tips could introduce
(or mask) an excess of trait change and lead to the false
inference of the presence of jumps in trait evolution for
the phylogeny. If this is a concern, tips may be modeled
with noise at the potential price of losing power to reject
BM in favor of a Lévy process with jumps. Second, the
phylogeny is assumed to be fully resolved with errorless
branch lengths. If a trait truly evolved by single-rate BM
but exhibits an excess of trait change for the specified
branch length, it is possible that branch’s trait evolution
is simply an outlier among realizable evolution histories,
but it is also possible that the true branch length is longer
than indicated. A potential solution is to include posterior
samples of the branch length from a Bayesian phylogenetic
analysis.

When fitting models of evolution to comparative data, it
is important to keep in mind the distinction between the
model of evolutionary change and the joint distribution
of trait values at the tips that such a model produces.
This mapping is not one-to-one; many different models
can result in the same joint distribution at the tips and are
therefore indistinguishable from the data alone. To choose
between these otherwise equivalent models, scientists
must look beyond comparative data, for example, to the
fossil record and mechanistic biological models. Here, we
have used BM as a representative process that results
in a multivariate normal distribution with a particular
covariance structure. Other processes that produce this
same joint distribution exist. Similarly, though we fit
models with jumps, there are many gradual processes
that can produce the exact same distribution at the tips
as a jump model, such as models which use BM with
random rate shifts (although these models may not have
straight forward or desirable biological interpretations).

Many other Levy processes exist. We have only
showcased a few, but our method can be applied to any
Lévy process with a known characteristic function. It
will be interesting to see whether different evolutionary
processes, different clades, or different traits are best
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modeled by certain types of Lévy processes, be it BM or
the AS process.

SUPPLEMENTARY MATERIALS

The primate data files and supplementary tables and
figures can be found in the Dryad data repository at
http://datadryad.org, doi:10.5061/dryad.0n761.
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