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Abstract.—Biotic interactions are hypothesized to be one of the main processes shaping trait and biogeographic evolution
during lineage diversification. Theoretical and empirical evidence suggests that species with similar ecological requirements
either spatially exclude each other, by preventing the colonization of competitors or by driving coexisting populations to
extinction, or show niche divergence when in sympatry. However, the extent and generality of the effect of interspecific
competition in trait and biogeographic evolution has been limited by a dearth of appropriate process-generating models to
directly test the effect of biotic interactions. Here, we formulate a phylogenetic parametric model that allows interdependence
between trait and biogeographic evolution, thus enabling a direct test of central hypotheses on how biotic interactions
shape these evolutionary processes. We adopt a Bayesian data augmentation approach to estimate the joint posterior
distribution of trait histories, range histories, and coevolutionary process parameters under this analytically intractable
model. Through simulations, we show that our model is capable of distinguishing alternative scenarios of biotic interactions.
We apply our model to the radiation of Darwin’s finches—a classic example of adaptive divergence—and find limited
support for in situ trait divergence in beak size, but stronger evidence for convergence in traits such as beak shape and
tarsus length and for competitive exclusion throughout their evolutionary history. These findings are more consistent
with presympatric, rather than postsympatric, niche divergence. Our modeling framework opens new possibilities for
testing more complex hypotheses about the processes underlying lineage diversification. More generally, it provides a
robust probabilistic methodology to model correlated evolution of continuous and discrete characters. [Bayesian; biotic
interactions; competition; data augmentation; historical biogeography; trait evolution.]

One of the major goals of biogeography is to explain
the dramatic variation in species richness across the
planet. Ultimately, any difference in species richness
between two regions stems from contrasting frequencies
of speciation, extinction, or dispersal events (Ricklefs
1987). While diversification processes alone drive the
total number of species through time, range evolution
dynamics cannot be ignored when explaining spatial
gradients of biodiversity (Wiens and Donoghue 2004).
Indeed, the increase in richness within an area can
only be the result of a new species eventually coming
into (or remaining in) sympatry (Weir and Price 2011;
Pigot and Tobias 2013). This necessarily involves two
general processes: that of lineage splitting followed by
that of establishing coexistence. Yet, we still lack a
basic understanding on the generality and magnitude
of the different processes that shape the geographical
and phenotypic evolution of diversifying lineages (Mayr
1970; MacColl 2011; Tobias et al. 2014; Clarke et al. 2017).

Evidence suggests that the great majority of speciation
processes, at least in terrestrial animals, involve
an allopatric phase, with few conclusive examples
demonstrating parapatric or sympatric speciation in
nature (Mayr, 1970; Coyne and Orr, 2004; Rundell
and Price, 2009; but see Stroud and Losos, 2016).
The prevailing view asserts that new species arise
from geographically isolated populations that evolve
sufficient morphological, ecological, physiological,
behavioral, and/or genetic differences to act as
reproductive barriers. These incipient species usually

fill very similar ecological niches since the initial driver
of reproductive isolation was chance separation by
geographical barriers (Kozak and Wiens 2006; Rundell
and Price 2009; Cadena et al. 2011; Smith et al. 2014).
Equivalent ecological requirements are supposed to
make long-term coexistence untenable, following the
competitive exclusion principle (Gause 1934; Hardin
1960; Macarthur and Levins 1967). Recent radiations
often follow this principle, with closely related species
occupying similar habitats but separated by physical
barriers (recognized more than one century ago as the
“general law of distribution”; Jordan, 1905; Rundell
and Price, 2009). For species to attain sympatry, and
thus elevate local richness, coexistence theory predicts
that species must diverge sufficiently along one or
more niche axes to avoid competition (Elton 1946;
Hardin 1960; Macarthur and Levins 1967; Diamond
1978; Grether et al. 2009; Godoy et al. 2014).

Consequently, biotic interactions seem to be
paramount in shaping trait and biogeographic
distributions of evolving lineages. The effects of
biotic interactions during evolutionary radiations can
be broadly categorized in three ways: by limiting (or
enhancing) geographical expansion (Rundell and Price
2009; Ricklefs 2010; Weir and Price 2011; Pigot and
Tobias 2013; Tobias et al. 2014; Pigot et al. 2018), by
promoting (or reducing) local extinction (Slatkin 1974;
Simberloff and Boecklen 1991; Valone and Brown 1995),
and by inducing niche divergence (or convergence)
in coexisting species (Lack 1954; Rohwer 1973;
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Schluter 2000; Davies et al. 2007; Pfennig and
Pfennig 2012). While there are experimental tests
and suitable models to detect biotic interactions for
shallow divergences under population genetic or
ecological models (e.g., Lotka 1924; Neuhauser and
Pacala 1999; Schluter 2000; Scheffer and van Nes 2006),
the long-term evolutionary consequences of biotic
interactions measured at ecological time-scales remain
difficult to characterize. Except for a few illuminating—
but serendipitous—fossil sequences (Eldredge 1974;
Schindel and Gould 1977), our understanding has
been mostly restricted to tests of phylogenetic
community structure metrics, such as measures of
trait under/overdispersion juxtaposed to null models
(Webb et al. 2002; Cavender-Bares et al. 2009), and
correlative analyses, such as sister-species comparisons
between allopatric species and those that have achieved
secondary sympatry (Schluter et al. 1985; Davies et al.
2007; Pigot and Tobias 2013; Anacker and Strauss
2014; Gutiérrez et al. 2014; Freeman 2015; Cadotte
et al. 2017; McEntee et al. 2018). Though insightful,
such pattern-based studies rely on nongenerative
models that do not disentangle how the processes
are driven by biotic interactions over evolutionary
timescales. The different stages of biotic interactions
unfold through a complex interplay between phenotype
and geographical distribution of lineages, where those
interactions are often ephemeral during the evolutionary
history of species (Brown and Wilson 1956), and so
possibly disregarded when studies are restricted to
ecological timescales (Schindel and Gould 1977). To
understand this interplay, generative phylogenetic
models are needed that allow for reciprocity in trait-
range interactions during radiations that unfold over
millions of years.

Event-based phylogenetic models have pivotally
advanced our understanding of trait and range dynamics
of lineages through time (e.g., Butler and King 2004;
Ree et al. 2008; Lemey et al. 2010; Goldberg et al. 2011;
Uyeda and Harmon 2014; Gill et al. 2017). Standard
phylogenetic models, however, generally disregard one
or several features that are essential to an idealized
model of trait-range evolution. Two key features are
1) that lineages should evolve interdependently with
one another and 2) that trait dynamics and range
dynamics should be capable of influencing one another.
Addressing the first challenge, Nuismer and Harmon
(2015) derived a stochastic differential equation (SDE)
to test for the effect of biotic interactions under a
phylogenetic tree and present day species data. Because
species must be in sympatry to interact, Drury et al.
(2016) and Clarke et al. (2017) extended the framework to
limit species interactions to those times when lineages
were estimated to be in sympatry. Drury et al.’s
and Clarke et al.’s methods rely on pre-estimating a
distribution of ancestral ranges, and then conditioning
on those histories to estimate ancestral trait dynamics.
One consequence of this is that the range dynamics
unidirectionally influence trait evolution. The second

challenge relates to how sets of traits coevolve within a
single lineage (Pagel 1994). To model coevolving discrete
traits, Sukumaran and Knowles (2018) proposed a joint
dependence between discrete geographical and binary
traits by treating the two traits as a single compound
trait, then modeling the evolution of that trait with an
appropriately structured rate matrix. Lartillot and Poujol
(2011) introduced a phylogenetic method that jointly
models the coevolution of continuous traits, discrete
traits, and (hidden) lineage-specific evolutionary rates
or parameters. And while Lartillot and Poujol’s software
implementation of the method, coevol, is specialized
to study how molecular substitution processes are
unidirectionally shaped by life history traits, the
underlying design of coevol’s inference machinery is
suited to more general problems in which continuous
traits influence the instantaneous transition rates for
models of discrete trait evolution. This is to say that
fitting phylogenetic models with either interactions
between lineages or with interactions between characters
are both challenging problems, each in its own right.

In our work, we build upon these pioneering
studies to develop a new parametric model to test
for the effect of biotic interactions on the interplay
between trait evolution and biogeographic history.
First, to better reflect theoretical expectations, we
reformulate the SDE describing trait evolution such
that the pressure from coexisting species is stronger
when lineage traits are most similar, and wanes as
traits diverge. Second, instead of supplying a pre-
estimated distribution of biogeographic histories, we
simultaneously infer biogeographic and trait histories
to model interdependence among trait evolution,
sympatry, dispersal, extirpation, and biotic interactions.
Third, we allow trait evolution to directly affect the
colonization and local extinction rates of lineages
throughout their biogeographic history. Specifically, the
colonization and local extinction rates for a lineage at a
given time depend on the trait values of lineages present
across the different biogeographic areas. Notably, our
generative model allows the direct examination of
the distinct contributions of pre- and postsympatric
niche divergence while attaining secondary contact.
For instance, a lineage attempting to colonize a given
area might be limited by the similarity among its trait
value and those from the species in that area (i.e.,
competitive exclusion), suggesting a role of presympatric
niche divergence for successful colonization. Conversely,
a lineage could readily colonize any area, independent of
the trait distribution found there, but be forced to change
because of strong in situ interspecific competition,
indicating postsympatric niche divergence. We note,
however, that we do not model the intricacies of
geographic speciation at the nodes and assume that
allopatric speciation does not occur; we leave the
modeling of this important speciational process to
forthcoming work.

Our method fits the model using data augmentation
(DA) within a Bayesian framework to perform parameter
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inference, enabling accurate propagation of uncertainty
in the posterior distributions by integrating over all
trait, and biogeographic scenarios found to be likely
by the model. This algorithm has the added advantage
of returning joint posterior reconstructions of trait and
biogeographic histories, which can be used in post
hoc analyses and visualizations. To assess the behavior
of our model and to validate our method, we first
measure how well it fits a variety of data sets that were
simulated under a breadth of evolutionary scenarios.
Subsequently, we fit the model to the adaptive radiation
of Galápagos finches, an evolutionary system that has
been instrumental in exploring phenomena including
character displacement, competitive exclusion, and local
extirpation due to competition pressure (Lack 1947;
Schluter et al. 1985; Grant and Grant 2006). Although
our present work focuses on the reciprocal evolution of
continuous-valued ecological traits and discrete-valued
ranges within and between lineages, our inference
framework is extensible to more general models of
coevolution than studied here.

To our knowledge, this is the first study that models
biogeographic history and continuous trait evolution as
interdependent with one another. This allows biologists
to assay previously untestable hypotheses explaining the
biogeographic history of clades at the intersection of
evolutionary biology and ecology.

MODEL

Current Approaches for Interdependent Trait Evolution
Between Lineages

Nuismer and Harmon (2015) introduced a continuous
trait model where traits of lineages depend on traits
of other contemporaneous lineages, allowing biotic
interactions among lineages to drive trait divergence and
convergence. We follow their derivation of the model,
but note that we have modified the notation for the
following equations to match analogous parameters in
our model. Under the assumption that all lineages are
able to interact with each other at any given time (i.e., all
are sympatric), weak natural selection and fixed additive
genetic variance and population sizes, the change in
population mean phenotype for lineage i is given by the
following stochastic differential equation (SDE; Eq. S38
in Nuismer and Harmon, 2015)

xi(t+dt)=xi(t)+�(�−xi(t))dt+ωx(�(t)−xi(t))dt+�dWt,
(1)

where � represents the strength of selection, � the
selective optimum, ωx the strength and directionality of
competitive interactions, � the expected value of mean
phenotypes among all lineages, � the diffusion rate, and
Wt the Wiener process (i.e., standard Brownian motion
of Gaussian increments with mean 0 and variance
1). This model couples genetic drift and stabilizing
selection (i.e., single-peak Ornstein–Uhlenbeck) with
competitive coevolutionary dynamics; when �=0, the

model collapses to a random drift with competitive
interactions; if, additionally, ωx =0, the model becomes
a Brownian motion. Lastly, when ωx<0, lineage traits
are repelled from a shared average; whenωx>0, lineage
traits converge to this average.

The above model assumes that all lineages in the
phylogenetic tree have been sympatric along their
evolutionary history, which is often not the case. Drury
et al. (2016) expanded on this competition model
to incorporate a sympatry matrix among lineages
through time. The sympatry matrix effectively limits any
interspecific effects upon trait evolution to only those
lineages in sympatry at a given time. To do so, let A(t)
represent a time-varying sympatry matrix where entry
Ai,j(t)=1 if lineages i and j are sympatric at time t and 0
otherwise. Then, the change in trait value is given by the
following SDE

xi(t+dt)=xi(t)+ωx

((∑
j Ai,j(t)xj(t)∑

j Ai,j(t)

)
−xi(t)

)
dt+�dWt.

(2)
Note, this version of the inference model does not

consider stabilizing selection (�=0; Drury et al., 2016).
The likelihood of the parameters of interest, ωx, �, and
the ancestral state estimate of the most recent common
ancestor (MRCA), is a multivariate normal density
with mean equal to the MRCA state and the scalar
product of � with the resulting variance–covariance
matrix (Manceau et al. 2017). Drury et al. (2016) derived
the SDEs governing the expected variance–covariance
through time and use numerical integration to solve
from the root to the tips.

Clarke et al. (2017) proposed a different SDE where
lineage phenotypes are assumed to have normal
distributions that phenotypically displace one another
in trait space based on their degree of overlap.

xi(t+dt)=xi(t)+ωx
∑

j

Ai,j(t)foverlap(xi(t),xj(t))dt+�dWt.

(3)
This equation has the advantage of summing over the
relative repelling forces from each sympatric lineage to
determine the effect on trait evolution instead than just
being driven by a community average (Clarke et al. 2017).

One concern with these (and similar) approaches
is that biogeographic history is inferred separately
from trait evolutionary dynamics, and then conditioned
upon when estimating a competition effect on trait
evolution. Biologically, the distribution of lineage
traits across areas is likely to directly affect dispersal
patterns of lineages along their biogeographic history.
For example, extirpation rates might increase among
competing lineages while in sympatry, and dispersal
rates might decrease for lineages attempting to colonize
areas occupied by competitors. More subtly, sequential
inference schemes that uniformly average over posterior
samples often do not properly weigh the probability
of each “upstream” sample when aggregating results
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FIGURE 1. Hypothetical example of a time-discrete history with interdependence between biogeographic and trait evolution for two species,
a) (no stripes and solid lines) and b) (white stripes and dotted lines), across two areas, I (orange) and II (blue). We assume that there is in situ
competition, fixing ωx =−1, that there is competitive exclusion by fixing ω1 =−1, and that there is extinction mediated competition by fixing
ω0 =1. Furthermore, we assume that the random drift �2 =0.1, the base rate of colonization �1 =1 and the base rate of extinction �0 =1. The
trait under consideration is the standardized size, specified by X(t). Y(t) conveys the specific biogeographic history for each species; filled circles
represent that the species occupies the area while empty ones that it is absent. The deterministic component of our SDE is given by fx(·) and
determines the directionality of trait change when in sympatry (Equation 4). Effective rates of colonization per species per area is given by �̇1(·);
the highest rate of colonization is �1 and is given when an area is empty (e.g., last two time steps for area II; Equation 5). Effective rates of
extinction per species per area is given by �̇0(·); the lowest rate of local extinction is �0 and is given when the species is alone in an area (Equation
5). Drawings and values are mathematically consistent following our model.

under the “downstream” model. This forces the support
for each upstream sample to be taken as equal under
the downstream model even when that is not true,
resulting in the incorrect propagation of uncertainty in
the ancestral ranges of lineages—that is, a range that is
unlikely to be sampled under the trait model would be
awarded too much support. Jointly modeling trait and
range evolution would circumvent both of these issues.

Mutually Dependent Trait and Range Evolution Model

Hypotheses framework.—There are three parameters that
regulate the effect of biotic interactions in our model.
The magnitude and directionality of these parameters
explicitly examine three expected processes in which
interspecific biotic interactions shape biogeographic and
trait evolution (Fig. 1).
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TABLE 1. Effect of model parameters upon the evolution
of sympatric lineages. Trait evolution (ωx) and extirpation (ω0)
parameters are informed by sympatric differences in traits in the
currently inhabited area(s). The colonization parameter (ω1) is
informed by differences in traits between the colonizing lineage and
the resident trait distribution in the area to be colonized
Parameter Value Effect of sympatry

ωx 0 No effect
<0 Traits diverge
>0 Traits converge

ω1 0 No effect
<0 Lower colonization rates
>0 Higher colonization rates

ω0 0 No effect
<0 Lower extirpation rates
>0 Higher extirpation rates

i. Sympatric competition driving character change is
described by ωx (i.e., postsympatric effect of biotic
interactions on trait evolution). If ωx<0 or ωx>0,
biotic interactions are driving character divergence
and convergence, respectively. Ifωx =0, no effect of
biotic interactions is found when in sympatry, and
the particular trait follows a random walk.

ii. The effect of biotic interactions on successful
colonization is regulated by ω1 (i.e., presympatric
effect of biotic interactions). If ω1<0, lineages
have lower rates of successful colonization for
areas inhabited by similar species, indicative of
competitive exclusion. If ω1>0, lineages have
higher rates of successful colonization for areas
inhabited by similar species, presumably because
of environmental filtering. Similarly, if ω1 =0,
there is no effect of biotic interactions on rates of
colonization.

iii. Finally,ω0 describes the effect of biotic interactions
on rates of local extinction. Ifω0>0, phenotypically
divergent lineages within an area are less
likely to go locally extinct, suggesting that
competition pressure drives extirpation. If ω0<0,
phenotypically similar lineages within an area are
less likely to go extinct, which would resemble the
effect of environmental filtering. Again, if ω0 =0,
there is no effect of biotic interactions on local
extinction rates.

Table 1 summarizes the effect of model parameters
upon the evolution of sympatric lineages for reference.

Adopting a Bayesian perspective allows one to directly
detect the effect of sympatric interactions on trait and
range evolution. When the 95% highest posterior density
(HPD) does not contain the value ωx =0, we take this
as strong support to reject the hypothesis that traits
evolve independently among lineages. Similarly, we
interpret HPDs that do not contain ω1 =0 or ω0 =0 as
evidence against colonization and extirpation rates being
independent of interspecific effects.

Model details.—We define a joint probabilistic model
where rates of area gain and loss for a species may

depend on the trait values of all species present in the
determined area, and trait values may depend on the
trait values of sympatric species (Fig. 1). Given a fixed,
fully bifurcating and time-calibrated phylogenetic tree
with n extant species and observed data at the tips,
we model the biogeographic and trait evolution across
time. The crown age of the tree occurs at time 0, with
time progressing forward until observing the present
values at the tips at time T. We denote the entire trait
evolutionary history along the phylogenetic tree as X
and the entire biogeographic history as Y. As above, let
xi(t) be the trait value, in continuous space, for lineage i at
time t. For a set of K discrete areas, k ∈{1,...,K}, let yi,k(t)
be 1 if lineage i is present in area k or 0 if it is absent at time
t. Thus, the geographic range of lineage i at time t can
be represented by the vector yi(t)={yi,1(t),...,yi,K(t)}.
Excluding distributions in which species are absent from
all areas (i.e., forbidding lineages from going globally
extinct) yields a biogeographic state space containing
2K −1 possible ranges. We sample n tips at the present,
each with a trait value, xi(T), and occurring at a subset
of discrete locations, yi(T). These observations are the
result of trait evolution and of species changing their
geographic range either by colonizing (area gain) or
going locally extinct (area loss) across time.

We model the effect of competition on the trait
evolution of lineage i using the following SDE

xi(t+dt)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(t)+ωx

(∑
j sgn(�xj,i(t))

if ωx<0
(divergence)

�yj,i(t)e−|�xj,i(t)|
)

dt+�dWt

xi(t)+�dWt
if ωx =0
(no effect)

xi(t)+ωx

(∑
j�xj,i(t)

if ωx>0
(convergence)

�yj,i(t)
)

dt+�dWt

.

(4)

where sgn(x)={−1if x<0, 0if x=0, and1if x>0}, and

�xj,i(t)=xj(t)−xi(t),

and

�yj,i(t)=
∑

k yj,k(t)yi,k(t)∑
k yi,k(t)

represent trait and range differences between lineages,
respectively. That is, Equation 4 models how the
strength of biotic interactions for the focal lineage i
at time t is measured in relation to the weighted
sum of trait differences with other species, �xj,i(t),
scaled proportionally to the amount of range overlap,
�yj,i(t). Figure 2a illustrates the behavior of this SDE.
Importantly, the SDE induces the desired behavior that
competition strength should decay as trait dissimilarity
increases. Fortunately, the inference scheme that we use
(see below) provides great flexibility in specifying the
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FIGURE 2. Functional forms for the joint evolution of trait
and ranges. a) An illustration of the SDE used to model the role
of biotic interactions in trait evolution. We plot trait evolution
as the stochastic (diffusion) component superimposed upon the
deterministic (interspecific) component. At time t=0, the phenotypic
values of two lineages, Xa(t)=−0.1 and Xb(t)=0.1, evolve according
to the in situ biotic interations parameter, ωx. If ωx<0, the lineages
repel each other, if ωx =0, the lineage evolves by random drift, and
if ωx>0, they attract each other. b) Functional form relating trait
differences for lineage i and those in area k, 	i,k , and the logarithm
of the effective rates of colonization or extinction, log(�̇h(·)). Here, h
indicates a gain (1) or loss (0) event, for different values of ωh. Purple
colors represent ωh values close to −2 and orange colors close to 2. If
ωh<0, lower trait differences between lineages suffer higher penalties
in rates of colonization or extirpation relative to larger differences, if
ωh =0, then �̇h(·)=�h =2, and finally if ωh<0, larger trait differences
between lineages enhance the rates of colonization or extirpation.

deterministic part of the SDE, as long as it is a function
of the form xi(t+dt)= fx(X(t),Y(t),ωx,dt)+�dWt.

To test the effect of biotic interactions on biogeographic
history, we allow for rates of area gain and loss for a given
lineage i to vary according to the similarity between its
phenotype, xi, relative to the phenotypes of all remaining
species currently in an area. We define the base rate of
area gain (or the base colonization rate) as �1 and the
base rate of area loss (or the base extirpation rate) as �0.
Then let �̇h(i,k,t,�h,ωh,X,Y) be the instantaneous rates
of area gain (h=1) or loss (h=0) for area k and lineage i
at time t. Then, we define

�̇h(i,k,t,�h,ωh,X,Y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�h

(
1+e−	i,k(t)

)ωh
if yi(t−dt)

and yi(t)
differ in 1
area

0 if yi(t−dt)
and yi(t)
differ in >1
area

,

(5)
where

	i,k(t)=min{y1,k(t)|�x1,i(t)|,...,yn,k(t)|�xn,i(t)|},
where ωh controls the strength of the effect of biotic
interactions on rates of colonization or extirpation, and
	i,k(t) is the minimal distance in trait space between
lineage i and those in area k (if area k is unoccupied then
�̇h(·)=�). Note that the instantaneous rates of area gain
equal the base rates of gain when the area to colonize
is unoccupied and rates of area loss equal the base rates
of loss when a species is allopatric to all other species

or when the appropriate range interaction parameter
is zero (ωh =0). Finally, we assume only a single area
may be gained or lost from a species range with each
colonization or extirpation event, respectively.

Equation 5 is a simplified version of
the generalized logistic function (see
Supplementary Appendix available on Dryad at
http://dx.doi.org/10.5061/dryad.8w9ghx3gm). When
ω1 is negative, these functional forms designate �1 as
the maximum colonization rate into an unoccupied
area, and the presence of other species induces a penalty
on the rates, in turn, when ω1 is positive, colonization
rates are enhanced. Similarly, �0 is the extirpation rate
within an area occupied only by one species, with any
additional species inducing a rate increase with ω0>0
and a decrease when ω0<0. In both cases, the penalty is
dependent on the minimum trait distance between the
focal species i and those in the area being considered k
(i.e., 	i,k). Thus, the magnitudes of ω1 and ω0 reflect the
degree to which biotic interactions affect biogeographic
rates (Fig. 2b).

A discretized time scheme.—We wish to compute the
probability of a single, exact coevolutionary history of
traits and ranges along all branches of a phylogeny.
Even for a single trait-range history, we were unable to
derive an analytical form of the transition probabilities
for trait evolution (Eq. 4) and range evolution (Eq. 5) as
functions of continuous time. Thus, following Horvilleur
and Lartillot (2014), we represent the continuous-time
processes of trait and range evolution in discrete time.
This time discretization serves two purposes: first, it lets
us derive the discrete-time transition probabilities we
need to compute the model probability; and, second,
it provides a basis to rapidly query the complete
evolutionary state shared across lineages, areas, and
traits at regular time intervals, which is essential for
computing the transition probabilities.

Figure 3a,b illustrates an example output of our two-
stage discretization procedure, which results in the
ordered vector of times, τ. The procedure works as
follows. Let t0 =0 be the crown age of the tree, and let T
be the time at which we observe the tip trait values, Xobs,
and range values, Yobs. Also, let branch b have a start
time tbs and end time tbf , such that tb = tbf −tbs. The first
stage divides each tb into K+1 equally spaced time slices
(i.e., the number of areas plus one), yielding the starting
vector of sampling times τb ={tbs =
b,1,...,
b,K+2,tbf =

b,K+3}. Because we only allow one event per time step,
the number of slices, K+3, guarantees that lineage i
has more than the minimum number of steps possibly
needed to evolve from range yi(tbs) to yi(tbf ) in the
case where yi(tbs) is absolutely different from yi(tbf )
(e.g., it would take at least three events for the range
yi(tbs)={0,0,1} to evolve into range yi(tbf )={1,1,0}). The
second stage sets a minimum time step allowed in
the analyses, �tmin, and proceeds forwards in time to
subdivide the remaining periods such that no time step is
larger than �tmin. In practice, we standardize �tmin using
the percentage of the tree height for comparability. This

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/69/4/739/5682421 by W

ashington U
niversity at St Louis user on 29 M

arch 2021

http://dx.doi.org/10.5061/dryad.8w9ghx3gm


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:02 9/6/2020 Sysbio-OP-SYSB190084.tex] Page: 745 739–755

2020 QUINTERO AND LANDIS—BIOTIC INTERACTIONS IN TRAIT AND BIOGEOGRAPHY 745

�

�

�

�

�

�

�

�

�

�

Time

4

2

0

-2

-4

2

0

-2

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

a) b)

c) d)

FIGURE 3. Illustration of the discretized DA used from a simulation performed on an ultrametric tree of five tips and four areas with in
situ competition (i.e., ωx =−1). a) One random sample trait history, X(t), from the posterior. b) One random sample of biogeographic range
history, Y(t), from the posterior across four areas. Each time sample has four circles in vertical orientation, each representing one of the areas.
Filled circles represent occupied areas while empty circles represent absence. Note that all branches have at least five internal discrete sampling
times, that is, one more than the number of areas in the current system. We set the minimum time interval here to be 2% for the tree height
for illustration purposes. c) Marginal posterior data augmented histories based on 100 samples in trait with translucency. d) Corresponding
marginal biogeographic histories. Darker tones represent higher marginal probabilities of area occupancy.

procedure results in a sorted vector of sampling times τ=
{t0 =0,...,T} that are shared among all contemporaneous
lineages throughout the clade’s history (and thus each τb
is updated accordingly such that it includes the sampling
times resulting from other overlapping branches). For
each branch b with sampling times τb ⊆τ, we end up with
a time ordered set describing the trait evolution of the
lineage, Xb ={xi(
b,1),...,xi(
b,|τb|)} and a time ordered
set of vectors describing the biogeographic history of the
lineage, Yb ={yi(
b,1),...,yi(
b,|τb|)}.
Model probabilities.—We are not aware of an analytical
form for the transition probabilities corresponding to
the range-dependent trait evolution model (Eq. 4), so
we approximate the trait probabilities using the Euler–
Maruyama method (see Supplementary Appendix). The
probability for trait evolution for branch b is then

Pr(Xb |�,ωx,X¬b,Y)=
|τb|−1∏

j=1

1

�
√

2��tj

×exp

⎧⎪⎨
⎪⎩−

(
xi(
b,j+1)−fx(X(
b,j),Y(
b,j),ωx,�tj)

)2

2�2�tj

⎫⎪⎬
⎪⎭, (6)

where �tj =
b,j+1 −
b,j and X¬b represents all trait
information excluding branch b.

The probability for the biogeographic history in
discrete time can be deconstructed into a series of events
and nonevents within small windows of time. An event
is defined as either an area colonization or loss, and a
nonevent as no change in state. Let h={0,1}, then the
probability after some time �t for area k is

Pr(yi(t)→yi(t+�t) |ωh,�h,X(t),X(t+�t),Y¬i(t),Y¬i(t+�t))

=
{

exp(−�̇h(·)�t) if yi,k(t)=yi,k(t+�t)
�̇h(·)exp(−(�̇h(·))�t) if yi,k(t) �=yi,k(t+�t) .

(7)

Then, the probability for branch b across all areas is:

Pr(Yb |ω1,ω0,�1,�0,X,Y¬b)=
|τb|−1∏

j=1

Pr(yi(
b,j)→yi(
b,j+1)

|ωh,�h,X(
b,j),X(
b,j+1),Y¬i(
b,j),Y¬i(
b,j+1)).

The prior probabilities for each state are usually set
to the stationary frequencies given by the dispersal rates
�1 and �0. We could not derive an analytical solution
for these frequencies, so we add a long branch (twice
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the tree height by default) to the root node, and then
simulate geographic range evolution along this branch
to approximate geographic range frequencies at the root
(Landis et al. 2013). Under the model assumptions, there
is no competition along the root node’s branch since only
one lineage of the clade is alive, so the biogeographic
history probabilities can be computed in continuous
time, as Pr(Yroot|�1,�0). Then, by incorporating the
trait evolution probabilities and multiplying across all
branches, we get the following joint history probability:

Pr(X,Y |θ,Mc)=Pr(Yroot |�1,�0,Mc)
2n−2∏
b=1

Pr(Xb |�,ωx,X¬b,Y,Mc)Pr(Yb |ω1,ω0,�1,�0,X,Y¬b,Mc),
(8)

where θ={�,ωx,ω1,ω0,�1,�0} is the vector of model
parameters and Mc is the model incorporating biotic
interactions.

Collision probability.—It is possible that a lineage gains
and then loses an area (or vice versa) from its range
so rapidly under the idealized continuous-time model
that those events would go undetected by our discrete-
time model. Such “collisions” of events within a single
discrete time bin might lead to underestimating the area
colonization and loss rates. We estimate an upper bound
on the collision probability, pc, that two or more range
evolution events occur within a fixed �t, such that our
sampling would not detect them. Specifically, let �t be
a time interval for which we sample Y and X at the
beginning, ts, and at the end, tf , where tf = ts +�t. If
the lineage is present in area k at time ts, the lineage
could lose this area and regain it before we are able to
register such an event at tf . Let r= (�1 +�0)�t, then the
probability that two or more events at times occur within
�t is

pc =Pr(two or more events<�t)

=1−Pr(0 events in �t)−Pr(1 event in �t)

=1− r0e−r

0! − r1e−r

1!
=1−e−r(1+r).

We consider �t to be the largest interval in the analysis,
thus providing a somewhat conservative measure of
collision probability. However, since the actual rates rely
on the specific interaction between trait value differences
and ω1 and ω0, this measure does not necessarily reflect
the actual collision probability, yet it still is a source of
objective information on amount of approximation error.
We monitor pc during inference to provide a measure
of error given the particular parameters and defined
�t.

Markov Chain Monte Carlo with DA
The main impediment to inference under the joint

model we defined is the mutual dependence of the trait
evolutionary history, X, and the biogeographic history,
Y. At any given time, trait evolution for one species
depends on the traits of those species it is sympatric with,
and the set of species that are able to coexist in sympatry
is contingent on the concurrent trait distribution. This,
in part, renders common inference procedures that rely
on a closed-form likelihood function or pseudo-exact
likelihood by numerical integration of SDEs infeasible.
Rather than analytically integrating over all possible
evolutionary histories, we use DA to numerically sample
over those histories (Robinson et al. 2003; Landis et al.
2013). Under DA, one repeatedly simulates otherwise
unobservable data to evaluate the probability of the
parameters, θ, under both the observed data, Dobs, and
the augmented data, Daug. Among several advantages
of using DA is the fact that, for certain problems,
simpler and more efficient probability functions exist
when augmented data are generated. By repeatedly
proposing different realizations of Daug during the
course of a Markov chain Monte Carlo (MCMC) analysis,
one numerically averages over the augmented data
to obtain the joint posterior of evolutionary histories
and model parameters, Pr(θ,Daug |Dobs,M). In our
case, we are interested in estimating the joint posterior
of trait histories, biogeographic histories, and model
parameters as Pr(θ,Xaug,Yaug |Xobs,Yobs). Figure 3c,d
shows a sample from the marginal posterior for DA trait
and biogeographic histories from a simple simulation.
We sample augmented evolutionary histories and
evolutionary parameters using the Metropolis–Hastings
algorithm (Metropolis et al. 1953; Hastings 1970).

Parameter, trait history, and range history proposals.—
Standard slide and scale moves are used to propose
new parameter values for �, �0, �1, ω0, ω1, and ωx (see
Supplementary Appendix available on Dryad).

We initialize the trait histories, Xaug, following the
procedure described in the Supplementary Appendix
available on Dryad. New trait history values are
proposed by adding a Gaussian deviation to a uniformly
sampled xi(t), such that xi(t)′ =xi(t)+N(0,s), where
s represents the tuning parameter. The Metropolis–
Hastings acceptance ratio () for this proposal is

=min
{

1,
Pr(X′

aug|θ,Xobs,Y,Mc)

Pr(Xaug|θ,Xobs,Y,Mc)

}
.

In addition, we generate less conservative updates by
proposing branch-wide updates for Xaug. We generate
Brownian bridges for branches in the tree using random
samples from an independent distribution for �∗,
where the asterisk denotes that the tuning parameter
is only used for sampling evolutionary histories and
is independent of the current sample of parameter �
(details for generating a Brownian bridge are given
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in the Supplementary Appendix available on Dryad).
First, we sample a branch uniformly at random, then
generate a Brownian bridge with standard deviation
�∗ ∼Lognormal(0,1) for that branch, holding the end
values constant. Similarly, following Horvilleur and
Lartillot (2014), we sample an internal node uniformly
at random then sample a new node trait value under
Brownian motion and generate Brownian bridges for the
three adjoining branches. The acceptance ratio for these
proposals is

=min
{

1,
Pr(X′

aug|Xobs,Y,θ,Mc)

Pr(Xaug|Xobs,Y,θ,Mc)

Pr(Xaug|Xobs,�
∗,MBM)

Pr(X′
aug|Xobs,�

∗,MBM)

}
,

where MBM denotes the Brownian motion model.
Range histories, Yaug, are assigned initial values as

described in the Supplementary Appendix available on
Dryad. To update range histories, we select an internal
node uniformly at random, including the root, and
sample a new geographic range from the joint density
under the mutual-independence model without biotic
interactions, M0. We use random samples from an
independent distribution for �∗

1 and �∗
0 to generate

DA biogeographic histories under M0. We improve
efficiency and acceptance rates of biogeographic
histories by using joint proposals for �∗

1 and �∗
0 such

that we randomly sample �∼Lognormal(0,1), and
then multiply � by a Lognormal distribution with

expectation of 1 and low variance such that �∗
h
� ∼

Lognormal(−0.044,0.3) for h∈{0,1}. Using the rejection
sampling described in the Supplementary Appendix
available on Dryad, we then sample new biogeographic
histories along the three adjoining branches such that
they are consistent with the new sampled geographic
range at the node and those at the end nodes. The
simplified acceptance ratio for this proposal is

=min
{

1,
Pr(Y′

aug|Yobs,X,θ,Mc)

Pr(Yaug|Yobs,X,θ,Mc)

Pr(Yaug|Yobs,�
∗
1,�

∗
0,M0)

Pr(Y′
aug|Yobs,�

∗
1,�

∗
0,M0)

}
,

where the first term is the ratio between the probabilities
of the proposed and current biogeographic histories
under the full model, Mc, and the second term
is the proposal density ratio under the mutual-
independence model, M0. Additionally, we perform
more moderate proposals for range evolution by
mapping biogeographic histories on a branch sampled at
random, leaving the end nodes constant. The acceptance
ratio for this branch update is the same as for the node
update. As mentioned earlier, daughter lineages inherit
the same geographic range as their parent lineage at
speciation times. This mimics a very particular case
of sympatric speciation, a strong assumption for the

biogeographic history of some clades. The intricacies of
geographical speciation will be left for future work (e.g.,
Ree et al. 2005; Matzke 2014).

Finally, to better explore parameter space, we make
joint Xaug and Yaug proposal updates. For the first
joint update, we uniformly sample a branch and update
the trait history using a Brownian bridge proposal and
update biogeographic history using stochastic mapping
as described above. Secondly, we uniformly sample an
internal node and generate a joint proposal for the node
and the three adjoining branches. The acceptance ratio
for these proposals is

=min
{

1,
Pr(X′

aug,Y
′
aug|Xobs,Yobs,θ,Mc)

Pr(Xaug,Yaug|Xobs,Yobs,θ,Mc)

Pr(Xaug|Xobs,�
∗,MBM)

Pr(X′
aug|Xobs,�

∗,MBM)
Pr(Yaug|Yobs,�

∗
1,�

∗
0,M0)

Pr(Y′
aug|Yobs,�

∗
1,�

∗
0,M0)

}
.

The Supplementary Appendix available on Dryad
contains a brief assessment of the performance of our
MCMC algorithm. We did not identify issues with
mixing or convergence that would undermine our
analyses of simulated and biological data.

Software.—We denote this model as “TRIBE”
(which stands for “Trait and Range Interspecific
Biogeographic Evolution”) and implement it in
a new open source package named “Tapestree”
(https://github.com/ignacioq/Tapestree.jl) that we
wrote in Julia (Bezanson et al. 2017). This software
makes available the tribe() function for inference and
the simulate_tribe() for simulations given a fixed
tree. We note that, in the software, we allow the user to
fix to 0 any or all of the parameters governing the effect
of biotic interactions (i.e., ωx, ω0, and ω1).

Simulations
We use simulations to explore model behavior. To

simulate biogeographic histories under this model, we
take advantage of the following approximation. Let V
be a random variable denoting the time of an event and
�(t) be the event rate at time t, then given a small enough
time step �t, we have

Pr(t≤V< t+�t | t≤V)≈�(t)�t.

Thus for a given lineage and timepoint, we use the
above time step size for all areas across the geographic
range. If there is more than one event within one time
step as defined by our time discretization scheme, we
reject and sample again. Similarly, to simulate trait
evolution under the competition model, we, again, take
advantage of the Euler–Murayama method detailed
in the Supplementary Appendix available on Dryad.
Simulation code, given a phylogenetic tree, can be found
at https://github.com/ignacioq/Tapestree.jl.

We simulated phylogenetic trees using a pure-birth
process until reaching 25 species and set the MRCA
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FIGURE 4. Boxplots of median posterior estimates from the different simulation scenarios. Each panel represents 100 different simulations in
pure-birth trees with 25 tips and 10 areas. The true values used for the simulations are represented in horizontal dotted purple lines.

trait value to 0 and the number of areas to 12. Given
the relatively large parameter space, we used the
same values for �1, �0, and �2 across all simulations,
and explored different combinations of the parameters
regulating the biotic interactions. In particular we
simulated 10 different scenarios with �1 =1.0, �0 =
0.4, and �2 =0.16, and the following combinations
of (ωx,ω1,ω0): (0,0,0), (−2,−2,0), (−2,2,2), (−2,0,0),
(2,0,0), (2,−2,2), (2,0,0), (0,−2,2), (0,−2,0), and (0,0,2).
Each scenario was simulated 100 times to yield a
total of 1000 simulations. While not exhaustive, these
simulations allow us to test the power and bias of our
model with regard to each of these three parameters.
Further exploration of parameter space is encouraged
for the future.

We ran MCMC inference on each simulation
for 100,000 iterations, logging every 100th iteration,
discarding the first 50,000 samples obtained during the
adaptive burn-in phase. We note that each iteration
corresponds to>55,000 parameter updates (the user can
adjust the weights for each parameter). We used weakly
informative priors for all parameters. Specifically, we
used a normal prior of mean 0 and standard deviation of
10 for ωx, ω1, and ω0, and an exponential prior of mean
10 for �2, �1, and �0. Most of the effective sample sizes
(ESS) for all parameters in each simulation were >300,
but in a few cases �2 or ωx had lower ESS; we made sure
that the ESS for each parameter was at least >150.

We evaluated our ability to correctly estimate model
parameters using highest probability density intervals
(HPD). Overall, our model is able to recover most of the
simulated parameter values and associated uncertainty.
The posterior median estimates reflect the simulated
values (Fig. 4) and 95% coverage probability based on
HPD for parameters reflecting biotic interactions occur
in over 90% of simulations for most scenarios (Fig. 5).
Most importantly, our model is able to reliably discern
when there is no effect of biotic interactions for ωx and
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FIGURE 5. Posterior statistical 95% highest posterior density
(HPD) coverage for the 10 simulation scenarios for each parameter.
Each symbol and color represents a different set of true values used
for the simulation, corresponding to those used in Figure 4. The dotted
line corresponds to 95% of HPDs across simulations covering the true
simulated parameter.

ω0 (Figs. 4 and 5). Estimates of the posterior mean of
ωx behave without bias when the true value is negative,
yet they have a marginally positive bias towards more
positive values when it is ≥0; this is most likely because
of an increase in skew in the posterior distribution as ωx
increases. The 95% HPD coverage is close to 0.95 for all
scenarios (Fig. 5).

Nonetheless, we find a minor bias in ω1, the
parameter regulating competition on colonization rates.
Recovered values for ω1 are biased toward lower values,
however, the coverage remains at least 90% for scenarios
with ω1 =0, yielding acceptable false positive rates
for competition (Figs. 4 and 5). We find the greatest
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bias and lowest coverage for scenarios in which ω1>
0 and may result in false negatives for facilitation
in colonization rates. Finally, we find that posterior
estimates of �1, �0 are somewhat underestimated, and
their medians are usually lower than the simulated
value. While concerning, this is likely due to the
interaction with the phenotypic traits and does not
preclude our ability to make inference on the effect
of biotic interactions on biogeographic and phenotypic
evolution. Supplementary simulations suggest that
increasing the number of linages and areas will result
in higher power in ωx and ω1 and ω0, respectively
(Supplementary Appendix available on Dryad).

Impact of the resolution of the discrete timescale.—
To evaluate the impact of different values of �tmin
in parameter estimates, we performed inference on
the same data with five different values of �tmin =
{0.99,0.2,0.1,0.01,0.005}. Note that it is often the case
that increasing values of �tmin to be greater than ca. 0.2
gives the same discretization scheme and thereby similar
results because our discretization procedure minimally
includes times for the start, end, and K+1 intermediate
time points along every branch in the tree (clearly,
this threshold is relative to the structure of the tree).
The simulations were conducted with the same pure-
birth tree of 25 species and 4 areas, and the following
parameter values: ωx =−2, ω1 =1, ω0 =−1, �=0.8, �1 =
4, and �0 =2. We ran the analysis with an adaptive burn-
in of 50,000 iterations and a sampling chain of 100,000.

We find that the impact of �tmin has minor
consequences on the parameter estimates in the posterior
distributions (Supplementary Fig. S1 available on
Dryad). This is most likely because discretization
procedure ensures that each branch will be subdivided
into a number of units greater (by one or more) than
the number of areas. Such discretization is thus finer
towards the tips, where more branches overlap in
time, and where inference is less uncertain (shallow
nodes are more proximate in time to the observed
trait and biogeographic data). We find �2, ω1, and
ω0 to be marginally affected by the choice of �tmin.
The differences are slightly pronounced in ωx, �1, and
�0, particularly in terms of precision. This is expected
as we reiterate that we are approximating the model
probabilities, and a finer discretization will be less
biased. For instance, a finer discretization allows higher
rates of colonization and extinction to be sampled in the
posterior (Supplementary Fig. S1 available on Dryad).
Larger �t values between sampling times incur in high
collision probabilities, thus ignoring high rates of state
changes and setting an upper limit on the inference
of rates of state change. Given our simulation results
and required computational efficiency, we suggest that
a �tmin =0.01 yields an acceptable representation of the
model probability.

Empirical Application: Darwin’s Finches in the Galápagos
We use our model to study how biotic interactions

have shaped the biogeographic and trait evolution

TABLE 2. Posterior estimates for analysis of Darwin’s finches

Posterior median and HPD estimates

Trait ωx ω1 ω0

Beak size −0.46 −6.38 1.53
(PC1) [−1.30, 0.54] [−9.89, −2.80] [−0.74, 3.90]

Beak shape 1.28 −4.28 2.2
(PC2) [0.12, 3.57] [−8.63, −0.46] [−0.16, 4.90]

Tarsus 2.41 −4.60 2.87
length [−0.04, 6.46] [−6.20, −1.50] [−0.26, 5.08]

Wing 0.61 −4.86 0.43
length [−0.10, 5.30] [−6.86, −1.23] [−0.99, 3.50]

of Darwin’s finches on the Galápagos islands (Grant
1999). For this, we used the species phylogenetic tree
from (Lamichhaney et al., 2015) for 14 species and
obtained corresponding breeding distributions across
the major Galápagos islands (19 islands, including Cocos
island), following Table 1.2 in Grant and Grant (2011).
Phenotypic measurements were obtained from Harmon
et al. (2010) and Clarke et al. (2017). Specifically, we used
three beak measurements, length (culmen), width, and
depth (gonys), in addition to tarsus and wing length,
all with natural logarithmic transformations. Given the
high correlation between the three beak measurements,
we used the first and second principal components
(which together explained >99.6% of the variance). The
first component mostly corresponds to size, while the
second corresponds to overall shape (Supplementary
Fig. S2 available on Dryad; Grant and Grant, 2002).
The finch data used in this study can be found in the
Supplementary Table S1 available on Dryad. We ran
separate models for these four trait values, for 5×105

iterations with an adaptive burn-in phase of 5×104

iterations.
We find that in situ trait evolution behaves very

differently across the four traits studied here (Fig. 6
and Table 2). Overall, we detect a signal of competitive
exclusion (ω1<0), with varied levels of strength. Beak
morphometrics (the first and second PCA components
relating to size and shape, respectively) display different
results (Fig. 6e). Beak size shows a slight signal of
divergence in sympatry, but the null hypothesis of
no effect of biotic interactions (ωx =0) is within the
95% HPD (median ωx =−0.46, 95%HPD=[−1.3,0.54];
posterior support for divergence Pr(ωx<0)=0.78); on
the other hand, beak shape shows convergence (median
ωx =1.28,95%HPD=[0.12,3.57]). These traits display
values of ω1<0, indicative of competitive exclusion,
particularly for beak size (median for size =−6.38
[−9.89,−2.8]; median for shape =−4.28 [−8.63,−0.46]).
Finally, we find no effect of biotic interactions on the
influence of beak size and shape on local extirpation
(median ω0 for size =1.53, [−0.74,3.9], for shape =
2.2, [−0.16,4.9]).

Figure 6b focuses on just two finch species that share
similar beak sizes at one moment in time (present-day),
but do not overlap on their geographic distributions.
Evidently, Certhidea fusca and C. olivacea are expected to
suffer from lower colonization rates into areas that are
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FIGURE 6. Empirical results for the effect of biotic interactions on the trait and biogeographic evolution of Darwin’s finches. a) 100 data
augmented trait histories for PC1 (beak size). Absolute deterministic effects of biotic interactions on trait evolution for sympatric lineages are
colored from gray (isolated evolution under Brownian motion) to purple (strongest effect of biotic interactions). b) Example of present-day effect
of biotic interactions in colonization rates between two species that are phenotypically similar, Certhidea fusca and C. olivacea. The areas are
displayed as circles arranged in a column, with currently occupied areas (islands) in black and unoccupied areas colored according to effective
colonization rates following the color scale in d (below). Note that areas occupied by the sister species suffer a colonization penalty and reflect
competitive exclusion in beak size as given by our model. c) Marginal data augmented biogeographic histories for the same 19 areas shown in b.
Alpha opacity denotes the marginal probability of presence at a given time for a given lineage-area. The color scale represents the average effect
of biotic interactions on local extinction rates (purple denoting higher rates of local extinction and orange, no influence). Currently occupied
areas are shown with black unfilled circles at the tips. d) As in c, but alpha opacity denote the marginal probabilities of absences at a given
time for a given lineage-area, and the color scale represent the average effect of biotic interactions on colonization rates (purple denoting lower
rates of colonization and orange no influence). Currently occupied areas are shown with black filled circles at the tips. e) Posterior marginal
densities for the parameter governing biotic interactions (left: ωx, middle: ω1, right: ω0) for each of the four phenotypic traits analyzed separately.
The results suggest in situ competition for beak size and strong convergence for tarsus and beak shape. All traits show strong penalization for
colonization when similar. See text for further details. Finch silhouettes from Caroline O’Donnell, redrawn from Biological Sciences Curriculum
Study, Biological Science: Molecules to Man, Houghton Mifflin (1963).

occupied by the other one. This example highlights how
our approach may identify whether the allopatric (or
sympatric) distribution between species is a product of
biotic interactions or independent of them.

We find no signal of in situ biotic interactions
for tarsus length evolution (Fig. 6e; median ωx =
2.41,95%HPD=[−0.04,6.46]). We do detect a strong
effect of competition upon colonization rates (median
ω1 = −4.6,95%HPD=[−6.2,−1.5]) but no effect of
biotic interactions on extirpation rates (median ω0 =
2.87,95%HPD=[−0.26,5.08]). There is no signal of
convergence for wing length when in sympatry (median
ωx = 0.61,95%HPD=[−0.1,5.3]), but instead find strong
competitive exclusion (median ω1 = −4.86,95%HPD=
[−6.86,−1.23]). We find no robust evidence for an effect

of competition in driving local extinction (median ω0
= 0.43,95%HPD=[−0.99,3.5]). Together, these results
suggest that there is strong evidence for competitive
exclusion in Darwin’s finches in beak morphology and,
particularly, in wing length (Fig. 6e).

DISCUSSION

Ever since Darwin (1859), biologists have strived
to understand the extent and generality of different
biological processes in driving current patterns of
diversity (Simpson 1953; Mayr 1970; Schluter 2000).
Building on previous developments, we introduce
a simplistic but extensible model that integrates
discrete biogeographic processes with continuous
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phenotypic evolution, enabling new ways to test the
relative importance of those processes driving trait
evolution, biogeographic history, biotic interactions, and
community assembly.

Darwin’s Finches
We show how biotic interactions influence trait and

biogeographic evolution using the radiation of Darwin’s
Finches and find that biotic interactions might have
played a role (although weak) in beak size divergence
when different species come into sympatry (Fig. 6).
While this is in accordance with previous findings (e.g.,
Lack 1947; Grant and Grant 2006; Lamichhaney et al.
2016; Clarke et al. 2017), we only find minimal evidence
for trait divergence in beak size and no evidence for
shape. Instead, our results suggest that bill shape and
tarsus length may have converged among coexisting
species. Presumably, the harsh and unpredictable
environmental conditions in the archipelago give rise
to strong selection against variants (Price et al. 1984),
leading to long-term morphological convergence in
some traits across the different islands. Indeed, character
displacement presupposes that there exists niche space
to be displaced into, but extreme events such as droughts
severely reduce the number of available resources
within an area (Grant and Grant 2011), removing
accumulated trait variance. Thus, our results suggest
that there could have been weak competitive divergence
in beak size but other traits might be phenotypically
constrained given the available environment. Future
model enhancements could incorporate environmental
information to distinguish biotic from abiotic effects.

While the phylogenetic species tree used here is
generally well-supported (Lamichhaney et al. 2015),
the radiation of Darwin’s Finches was evidently
fueled by extensive gene flow (Grant and Grant 2008;
Lamichhaney et al. 2018), an important evolutionary
process that we do not model as such. By using a species
tree that is fully bifurcating (without reticulation),
we ignore potential postspeciation gene flow and
introgression, and the possibility of hybrid speciation
(Grant et al. 2004; de León et al. 2010). For instance, some
of our estimates supporting sympatric convergence in
morphology (ωx>0) could be the result of adaptive
introgression during the clade’s evolutionary history
(Grant et al. 2004; Farrington et al. 2014; Lamichhaney
et al. 2018). Indeed, there is evidence of introgression in
loci related to beak morphology (Han et al. 2017), which
could account for the strong convergence we find in beak
shape (Fig. 6). The amount of trait convergence among
lineages to be attributed to introgression over alternative
explanations could be measured by extending our tree-
based model to accommodate phylogenetic reticulations
(Jhwueng and O’Meara 2015; Bastide et al. 2018).

Notably, by allowing trait-mediated biotic interactions
to directly influence biogeographic evolution, we are
able to recover evidence for competitive exclusion
during the radiation of Darwin’s Finches (Fig. 6).
That is, presympatric niche divergence facilitated the

colonization of new areas during the finch radiation.
We observe that all four traits shaped the rates of
colonization, to different extents, among the different
islands in the archipelago. Although our simulation
experiment shows our estimates are sometimes biased
toward negative values (Figs. 4 and 5), we recover
a particularly strong signal for competitive exclusion
correlated with beak size, where the 99.9% HPD does
not include the null model of no effect of biotic
interactions in colonization rates. This is in accordance
to theoretical and other empirical evidence suggesting
that coexistence can only be tenable with some degree
of niche divergence (Elton 1946; Hardin 1960; Macarthur
and Levins 1967; Diamond 1978; Godoy et al. 2014). Since
successful colonization is one means to increase an area’s
biodiversity, our results hint at one mechanism by which
ecological processes might lead up to macroevolutionary
patterns, such as the generation of spatial variation in
richness.

Inferring Trait-Range Histories
The development of phylogenetic models has allowed

researchers to reconstruct historical processes, even
when restricted to only extant information, and to test
central hypotheses regarding the tempo and mode of
evolutionary dynamics (Garamszegi 2014). Such models
are valuable, in part, because they require hypotheses
about the mode by which lineages evolve and diversify
(e.g., Butler and King 2004) to be defined in formal
terms (e.g., in an SDE). Understanding what features
are and are not formally modeled determines what
one may prudently conclude from analyses under the
method, which we aim to make explicit below. While
our model entails several simplifying assumptions,
future work may relax these assumptions to incorporate
additional features important to modeling trait and
range coevolution.

The simple biogeographic model used here assumes
that at the moment of speciation the daughter lineages
inherit identical ranges to their immediate ancestor, a
particular case of sympatric speciation. Given that the
great majority of speciation events involve a phase of
geographical isolation (Mayr 1970; Rundell and Price
2009), we acknowledge that this assumption does not
hold in most empirical systems. Importantly, by not
allowing allopatric cladogenesis sensu Ree et al. (2005),
the inferred parameters governing biotic interactions
can be equivocal on a clade with a history of allopatric
speciation. For instance, the effect of competitive
exclusion (ω1) is presumed to be large between recently
diverged species, yet, these are forced to coexist
instantly after speciation, probably underestimating
the effect of similarity in colonization rates (e.g.,
secondary contact times) by overestimating the period
of sympatry and bearing upon in situ biotic interactions
(ωx) to explain the trait variance. Consequently, an
important next step is to incorporate models that allow
for different modes of geographical speciation, such
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as the dispersal–extinction–cladogenesis (DEC) model
and relatives (Ree et al. 2008; Matzke 2014). This
requires designing efficient DA proposals and their
associated Metropolis–Hastings ratios, which we are
currently working to solve. Other relevant biogeographic
processes are not being considered but are relatively
straightforward to incorporate in future versions of the
model. Characteristics of the delimited geographical
regions, such as distance from each other (Landis
et al. 2013), geographical area (Tagliacollo et al. 2015),
connectivity (Kadmon and Allouche 2007), age of
area availability (e.g., on volcanic islands, Landis
et al., 2018), and resource availability (Tilman 1985)
will provide key information when inferring biotic
interactions. Furthermore, incorporating abiotic optima,
as determined by the different regional environments,
could be used to distinguish abiotic from biotic forces
acting upon trait and range evolution. Research in these
directions would further demonstrate the potential of
inferring trait and biogeographic evolution as interacting
processes (Sukumaran and Knowles 2018).

Assuming that interspecific competition acts
upon only a single axis of niche evolution, as we
assume, may be problematic (Connell 1980). Species
niches are better thought of as multidimensional
hypervolumes (Hutchinson 1957), and so viewing this
complexity through a single, univariate trait must
misrepresent the true nature of biotic interactions
between species (Diamond 1978; Grether et al. 2009).
In some cases, fitting the model separately to each trait
or asserting independence on the traits by multivariate
transformations (such as PCA) can unduly influence
parameter estimates (Uyeda et al. 2015; Cadena et al.
2018). For example, a lack of evidence for biotic
interactions within a given axis does not rule out
competition from occurring along other unmeasured
resource utilization axes (Connell 1980). We advise
the researcher to select a trait of study that has been
suggested as relevant to niche partitioning (e.g.,
bill size and shape in the Darwin’s finches; Grant
and Grant, 2002). Measuring species niche overlap
between partitions, however, is a general problem that
is pervasive across ecology (Diamond 1978; Petraitis
1979). Species usually occupy ranges of values along
niche axes (e.g., the range of temperature where the
species can persist) or have considerable intraspecific
variation; these features warrant modeling in future
methods (e.g., as in Quintero et al., 2015). Moreover,
niche similarity might differ between univariate and
multivariate spaces, and improved phylogenetic models
of competition should account for the multivariate
distances between value ranges in niches (Huelsenbeck
and Rannala 2003). Despite complications in identifying
and representing which traits may be involved in
competition, competitive forces are thought to be
stronger among recently diverged species because of
their overall similarity in resource use (Darwin 1859).
Likewise, we assume that biotic interactions have had
the same directionality and magnitude (relative to

phenotypic dissimilarity) across all lineages throughout
the clade’s evolutionary history, even though the
magnitude and sign of competitive effects probably
varies within and between clades, contingent on
measured, unmeasured, and unknown factors. While
our current model tests for the constant effect of a
clade-wide competitive process influencing a univariate
trait, it may be extended to accommodate multivariate
traits, trait value ranges, and branch-heterogeneous
competitive effects.

Our model assumes that the phylogenetic tree is
perfectly known. Ignoring phylogenetic error and
uncertainty might lead to biased or overconfident
posterior beliefs, and thus incorporating it is an
important future step. Unfortunately, as is, joint
inference of the phylogenetic tree and our model,
inference against a distribution of pre-estimated trees,
does not seem simple at present given the complexity of
our DA inference scheme. For instance, the generation
of a particular trait and range history is linked with
a specific phylogenetic tree. Changing the tree during
inference would involve resampling complete trait
and range histories from the posterior for the new
tree using complex MCMC proposals. In any case,
incorporating phylogenetic uncertainty should affect
the parameter estimates by primarily increasing their
posterior uncertainty, thereby decreasing false positives
rates (de Villemereuil et al. 2012). While not ideal,
we suggest making parallel inference on an empirical
distribution of trees (as generated from a Bayesian
analysis) and determining if the results hold across
samples from the tree distribution.

Moreover, our model assumes that biotic
interactions only occur between lineages modeled
by the phylogenetic tree, which we take to be the
reconstructed tree—a tree that only represents lineages
corresponding to the set of MRCAs shared among the
sampled taxa. Modeling competition while naively
taking the reconstructed tree to represent the true
evolutionary history among all lineages overlooks
any historical contribution from lineages left absent
in the reconstructed tree, namely absent lineages
representing the ancestors of excluded, unsequenced,
or extinct lineages. While, in principle, we can improve
representation among extant lineages, that is not
always the case with extinct lineages, yet disregarding
the influence of extinct lineages is known to mislead
some evolutionary inferences (Schindel and Gould
1977; Slater et al. 2012). Being blind to paleobiological
interactions may be particularly troublesome in our
case, since the geographic and phenotypic evolution
of any one ancestral lineage should depend on that of
all other contemporaneous lineages, independent
of their survival to the present. Provided that
the data are available, spatial and morphological
information from paleontology could be incorporated
in our model to attain more biological realism and
broaden applicability to clades were extinction rates
have been presumed to be high (Mitchell 2015;
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Silvestro et al. 2015). Correctly modeling the influence
of competitive effects with extinct or unsampled ghost
lineages that are not represented in the model will
require the introduction of features from birth–death
processes.

At first glance, developing such a model appears
mathematically and methodologically challenging,
but progress here would be rewarding. Modeling
interactions between trait evolution, competition,
biogeography, and diversification processes in a
phylogenetic context would represent a major advance
towards how we understand the generation and
maintenance of biodiversity. As phylogenetic models
of competition continue to mature, we must strive
to incorporate trait-diversification dynamics that are
thought to underlie well-studied macroevolutionary
phenomena, such as the Great American Biotic
Interchange (GABI; Simpson, 1950; Benton, 1987). The
biogeographic exchange of lineages during GABI is
considered to be the result of competition between
distantly related clades (Diamond 1978), and classic
macroevolutionary hypotheses, such as the “Red
Queen” (Van Valen 1973), suggest that temporal and
spatial turnover in taxa results mostly from biotic
interactions.

Bayesian DA
In our work, we provide a framework to test

the effect of ecological processes on phenotypic
and biogeographical distribution of species across
evolutionary time. The Bayesian DA framework we
present here is robust yet flexible, making it adaptable
to similar inference problems of associated discrete and
continuous character coevolution. For instance, similar
models were developed for processes of correlated
nucleotide substitution rates and Brownian motion
evolution (Lartillot and Poujol 2011; Horvilleur and
Lartillot 2014; Lartillot et al. 2016), and it is conceivable
that nucleotide substitution patterns should in some
way reciprocally influence how molecular phenotypic
traits, such as protein function, evolve (Robinson
et al. 2003; Rodrigue et al. 2006). We hope that
our algorithmic framework encourages and allows
other researchers to develop phylogenetic models
that study the interdependent effects of continuous
and discrete trait evolution within and between
lineages.

CONCLUSION

Character displacement is common, but without a
unique cause. It might be tempting to assume that
phenotypic divergence is the direct result of natural
selection acting to avoid competition on sympatric
populations (Grant 1972). But it is also plausible
that those populations were only able to spread into
sympatry because their niche was sufficiently different
from their competitors in the first place (Schluter and
McPhail 1992). Lack (1954) pointedly outlined this
difference over half a century ago when discussing

a case of the bird genus Sitta: “…the two species
show no overlap in beak measurements [where they
occur in sympatry], a difference presumably evolved
through the need for avoiding competition for food;
or rather, it is only where such a difference has been
evolved that the two forms can live alongside each
other.” It is by jointly examining the distinct processes
of trait and biogeographic evolution that will allow
biologists to test core theories for how biodiversity
is brought about. Clearly, the process by which
species diversify phenotypically and attain coexistence
is fundamentally important to the generation of spatial
gradients of diversity, and thus further understanding
of the underlying mechanisms is a paramount goal of
evolutionary biology.
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