
Theoretical Population Biology 102 (2015) 85–93
Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Sensitivity of quantitative traits to mutational effects and
number of loci
Joshua G. Schraiber a,∗, Michael J. Landis b

a Department of Genome Sciences, University of Washington, Seattle, WA 98195, United States
b Department of Integrative Biology, University of California, Berkeley, CA 94720, United States

a r t i c l e i n f o

Article history:
Received 19 January 2015
Available online 31 March 2015

Keywords:
Quantitative genetics
Coalescent theory
Characteristic function
Neutral theory

a b s t r a c t

When models of quantitative genetic variation are built from population genetic first principles, several
assumptions are often made. One of the most important assumptions is that traits are controlled by
many genes of small effect. This leads to a prediction of a Gaussian trait distribution in the population,
via the Central Limit Theorem. Since these biological assumptions are often unknown or untrue, we
characterized how finite numbers of loci or large mutational effects can impact the sampling distribution
of a quantitative trait. To do so, we developed a neutral coalescent-based framework, allowing us to
gain a detailed understanding of how number of loci and the underlying mutational model impacts the
distribution of a quantitative trait. Through both analytical theory and simulationwe found the normality
assumption was highly sensitive to the details of the mutational process, with the greatest discrepancies
arisingwhen thenumber of lociwas small or themutational kernelwasheavy-tailed. In particular, skewed
mutational effects will produce skewed trait distributions and fat-tailed mutational kernels result in
multimodal sampling distributions, even for traits controlled by a large number of loci. Since selection
models and robust neutral models may produce qualitatively similar sampling distributions, we advise
extra caution should be taken when interpreting model-based results for poorly understood systems of
quantitative traits.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Questions about the distribution of traits that vary continu-
ously in populations were critical in motivating early evolution-
ary biologists. The earliest studies of quantitative trait variation
relied on phenomenological models, because the underlying na-
ture of heritable variation was not yet well understood (Galton,
1883, 1889; Pearson, 1894, 1895). Despite the rediscovery of the
work of Mendel (1866), researchers studying continuous variation
in natural populations were initially skeptical that Mendel’s laws
could explain what they observed (Weldon, 1902; Pearson, 1904).
These views were reconciled when Fisher (1918) showed that the
observations of correlation and variation between phenotypes in
natural populations could be explained by a model in which many
genes made small contributions to the phenotype of an individual.

The insights of Fisher (1918) made it possible to build models
of quantitative trait evolution from population genetic first
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principles. Early work focused primarily on the interplay between
mutation and natural selection in the maintenance of quantitative
genetic variation in natural populations, while typically ignoring
the effects of genetic drift (Fisher, 1930; Haldane, 1954; Latter,
1960; Kimura, 1965).

However, genetic drift plays an important role in shaping
variation in natural populations.While earlierwork assumed that a
finite number of alleles control quantitative genetic variation (e.g.
Latter (1970)), Lande (1976) used the continuum-of-alleles model
proposed by Kimura (1965) to model the impact of genetic drift on
differentiation within and between populations. A key assumption
of Lande’s models is that the additive genetic variance in a trait
is constant over time. In fact, in finite populations the genetic
variance itself is random; at equilibrium, there are still stochastic
fluctuations around the deterministic value assumed by Lande,
even if none of the underlying genetic architecture changes (Bürger
and Lande, 1994).

Several later papers explored more detailed models to under-
stand how genetic variance changes through time due to the joint
effects of mutation and drift (e.g. Chakraborty and Nei (1982)).
Lynch and Hill (1986) undertook an extremely thorough analysis
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of the evolution of neutral quantitative traits. They analyzed the
moments (e.g. mean and variance) of trait distributions that arise
due to mutation and genetic drift and provided several quantities
that can be used to interpret variation within and between species
and analyze mutation accumulation experiments.

Much of this earlierwork hasmade several simplifying assump-
tions about the distribution of mutational effects and the genetic
architecture of the traits in question. For instance, Lynch and Hill
(1986), despite analyzing quite general models of dominance and
epistasis, ignored the impact of heavy tailed or skewedmutational
effects. While, in many cases, such properties of the mutational ef-
fect distribution are not expected to have an impact if a large num-
ber of genes determine the phenotype in question, it is unknown
what impact theymay havewhen only a small number of genes de-
termine the genetic architecture of the trait. Moreover, when mu-
tational effects display ‘‘power-law’’ or ‘‘fat-tailed’’ behavior, the
impact of the details of the mutational effects may persist even
in the so-called infinitesimal limit of a large number of loci with
small effects. Finally, mutation accumulation experiments have
produced skewed and/or leptokurtic samples of quantitative traits
(Mackay et al., 1992), which is a directmotivation to relax assump-
tions on the mutational effects distribution.

Such deviations that stem from the violations of commonmod-
eling assumptions have the potential to influence our understand-
ing of variation in natural populations. For instance, leptokurtic
trait distributions may be a signal of some kind of diversifying se-
lection (Kopp and Hermisson, 2006) but are also possible under
neutrality when the number of loci governing a trait is small. Sim-
ilarly, multimodal trait distributions may reflect some kind of un-
derlying selective process (Doebeli et al., 2007) butmay also be due
to rare mutations of large effect.

We have twomain goals in this work. Primarily, we want to as-
sess the impact of violations of common assumptions on properties
of the sampling distribution of a quantitative trait (e.g. variance,
kurtosis, modality). Secondly, we believe that the formalism that
we present here can be useful in a variety of situations in quantita-
tive trait evolution, particularly in the development of robust null
models for detecting selection atmicroevolutionary time scales. To
this end, we introduce a novel framework for computing sampling
distributions of quantitative traits. Our framework builds upon the
coalescent approach of Whitlock (1999), but allows us to recover
the full sampling distribution, instead of merely its moments.

First, we outline the biological model and explain how we can
compute quantities of interest using a formalism based on charac-
teristic functions. We then use this approach to compute the sam-
ple central moments. While much previous work focuses on only
the first two central moments (mean and variance), we are able
to compute arbitrarily high central moments, which are related to
properties such as skewness and kurtosis. By doing so, we are able
to determine the regime in which the details of the mutational ef-
fect distribution are visible in a sample from a natural population.
Additionally, we explore the convergence to the infinitesimal limit
and find that when ‘‘fat-tailed’’ effects are present, traditional the-
ory based on the assumption of normality can lead to misleading
predictions about phenotypic variation.

2. Model

The mechanistic model we construct has two components: a
coalescent process, and a geneticmutational process that acts upon
the controlling quantitative trait loci by sampling effect sizes from
amutational kernel. Together, these processes generate the values
of quantitative traits sampled from the study population while
explicitly modeling their shared genetic ancestry. Althoughwe opt
for simple model components during this exposition, the model
generally supports more realistic and complex extensions, such as
population structure and epistasis.

We assume that we sample n haploid individuals from a ran-
domly mating population of size N . Initially, we consider a trait
governed by a single locus and we will later extend the theory to
traits governed by multiple loci. Let µ be the mutation rate per
generation at the locus, and θ = 2Nµ be the coalescent-scaled
mutation rate. We model mutation as a process by which a new
mutant adds an independent and identically distributed random
effect to the ancestral state. Note that when the distribution of ran-
dom effects is continuous, this corresponds to the Kimura (1965)
continuum-of-alleles model. However, it is also possible for the
effect distribution to be discrete, similar to the discrete model of
Chakraborty andNei (1982).While thismodel does not capture the
impact of a biallelic locus with exactly two effects, the following
theory could easily be modified to analyze that case.

Fig. 1 shows one realization of both the coalescent and
mutational processes for a sample of size 5. Given the phenotype at
the root of the tree and the locations and effects of each mutation
on the tree, the phenotypes at the tips are determined by adding
mutant effects from the root to tip. To specify the root, we can
assume without loss of generality that the ancestral phenotype for
the entire population has a value 0 (this is similar to the common
assumption in quantitative genetics literature that the ancestral
state at each locus can be assigned a value of 0).

This mutational process can be described as a compound Pois-
son process (see also Khaitovich et al. (2005b); Chaix et al. (2008);
Landis et al. (2013) for compound Poisson processes in a phylo-
genetic context). To ensure that this paper is self contained, we
briefly review relevant facts about compound Poisson processes in
Appendix A.1.

In the following, we ignore the impact of non-genetic variation
and focus on the breeding value of individuals, i.e. the average
phenotype of an individual harboring a given set of mutations.

3. Results

3.1. Computing the characteristic function of a sample

In many analyses, the object of interest is the joint proba-
bility of the data. If we let X = (X1, X2, . . . , Xn) be the vec-
tor representing the values of the quantitative trait observed in a
sample of n individuals, we denote the joint probability of the data
as p(x1, x2, . . . , xn). Note that, in general, Xi and Xj are correlated
due to shared ancestry, and that p must be computed by integrat-
ing over all mutational histories consistent with the data. Hence,
computing p directly is extremely difficult.

Instead, we compute the characteristic function of X. For a
one-dimensional random variable, X , the characteristic function is
defined as E(eikX )where i is the imaginary unit, and k is a dummy
variable. Generalizing this definition to an n-dimensional random
variable, we are interested in computing

λn(k) = E(eik
TX)

= E(ei(k1X1+k2X2+···+knXn))

where k = (k1, k2, . . . , kn) is a vector of dummy variables. Like
a probability density function, the characteristic function of X
contains all the information about the distribution of X. Moreover,
computing moments of X is reduced to calculating derivatives
of the characteristic function, which will prove useful in the
following.

We calculate the characteristic function of X in two parts.
First, we compute a recursive formula for φn, the characteristic
function given that ancestral phenotype of the sample is equal to 0.
Then, we compute ρn, the characteristic function of the ancestral
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Fig. 1. Example realization of coalescent process for a sample of size 5. Mutations (marked as light gray X’s), are placed upon the genealogy representing each individual in
the population. Effects of each mutation are drawn from a probability distribution and are added along each branch length. The model is specified such that the most recent
common ancestor (MRCA) of the population has phenotype 0.0, while the MRCA of the sample may have a phenotype different from zero, due to mutations that accumulate
between the MRCA of the sample and the MRCA of the population.
phenotype of the sample, assuming that the ancestral phenotype
of the population is equal to 0. As we show in Appendix A.2,
we can then multiply these characteristic functions to obtain the
characteristic function of X.

We use a backward–forward argument to compute the recur-
sive formula, first conditioning on the state when the first pair of
lineages coalesce (backward in time) and then integrating (forward
in time) to obtain the characteristic function for a sample of size
n, φn. This results in

φn(k) =
2

n(n − 1)− θ


n

u=1
ψ(ku)− n


u<v

φn−1(k(u,v)) (1)

where k(u,v) is the vector of length n− 1 made by removing ku and
kv and adding ku + kv to the vector of dummy variables and ψ(·)
is the characteristic function of the mutational effect distribution.

This equation has a straight-forward interpretation. The char-
acteristic function for a sample of size n, φn, is simply the charac-
teristic function for a sample of size n − 1, φn−1, averaged over all
possible pairs that could coalesce first, multiplied by the charac-
teristic function for the amount of trait change that occurs more
recently than the first coalescent. The multiplication comes from
the fact that the characteristic function of a sum of independent
random variables is the product of the characteristic functions of
those random variables. We prove this result in Appendix A.3.

In Appendix A.4, we also show that the characteristic function
for the phenotype at the root of the sample is

ρn(k) = n!(n − 1)
∞
u=1

u
v=2

v(v − 1)
v(v − 1)− θ(ψ(k)− 1)

u!
(n + u)!

. (2)

Intuitively, this equation arises by conditioning on whether u
lineages are left in the population when the sample reaches its
common ancestor and then averaging over the (random) time
between when the individuals in the sample coalesce and when
everyone in the population coalesces.

Hence, the characteristic function for a sample of size n is

λn(k) = ρn(k1 + k2 + · · · + kn)φn(k).
3.2. Sampling traits controlled by a small number of loci

It is common practice in both theoretical and applied quanti-
tative genetics to summarize information about the phenotypic
distribution within a population by computing central moments.
However, care must be taken when interpreting theoretical pre-
dictions about central moments estimated from a sample. This is
because the phenotypes in the sample are not independent, but
instead correlated due to their shared genealogical history. Hence,
in any particular population, an estimate of a central moment may
deviate from its expected value, even as the number of individuals
sampled grows to infinity (Aldous, 1985).

With this caveat in mind, we computed the first four expected
centralmoments for a sample of phenotypes taken from thismodel
(see Appendix A.5 for details). They are

E(h2) =
1
2
θLm2

E(h3) =
1
6
θLm3

E(h4) =
3
4
θ2L2m2

2 +
1
4
θL(2θm2

2 + m4),

(3)

where hk is the unique minimum variance unbiased estimator of
the kth centralmoment (Halmos et al., 1946),mk is the kthmoment
of the mutational effect distribution (which can be calculated by
differentiating the characteristic function of the effect distribution,
ψ) and L is the number of loci that influence the trait.

These equations reveal that it may be possible to construct
method-of-moments estimators for the moments of the mutation
effect distribution and/or the number of loci that govern a trait.

3.3. ‘‘Infinitesimal’’ limits for large numbers of loci

Many traits are assumed to be governed by a large number
of loci, each individually of small effect. This is known as an
infinitesimal model (Falconer and Mackay, 1996). Typically, the
sampling distribution in the infinitesimal limit is assumed to be
Gaussian, by appealing to the central limit theorem. Here, we
find that under certain circumstances traits may not be normally
distributed, even in the limit.
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Fig. 2. Central moments. From left to right, the panels correspond to the central moments, h2, h3 , and h4 , respectively, for the sampling distributions evolving under various
mutational kernels. Data were simulated for 1024 sampled individuals and 2000 replicates for eight values of L, the number of loci. Colors distinguish the mutational kernel
and relevant kernel parameters (if any). Solid lines correspond to moment values computed from the simulated data. Dashed lines correspond to the expected moment
values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
To obtain a non-trivial limit, we must assume that as the
number of loci controlling the trait increases, the effect of each
individual locus decreases in an appropriate way. Then, computing
the characteristic function for a trait governed by a large number
of independent loci is simple due to the fact the characteristic
function of the sum of independent random variables is the
product of their characteristic functions. Thus, assuming that each
locus has the same effect distribution (this assumption can be
relaxed relatively easily) the characteristic function of the limiting
distribution of trait values is given by

Λn(k) = lim
L→∞

λn(k)L

= lim
L→∞

ρn(k1 + k2 + · · · + kn)Lφn(k)L

= Rn(k1 + k2 + · · · + kn)Φn(k)

where Rn is the limiting distribution of the phenotype at the root
andΦn is the limiting distribution of the evolution in the sample.

In Appendices A.6 and A.7, we show that mutation effect
distributions with power law behavior instead converge to a
limiting stable distribution. A random variable X is said to have
a power law distribution if P(X > x) ∼ κx−α for large x, some
κ > 0 and some α ∈ [0, 2). In this limit, individuals with shared
genealogymay still have highly correlated phenotypes, due to rare
mutations of large effect.

On the other hand, all mutation effect distributions without
power law behavior converge to a Gaussian limit, due to the
central limit theorem. To obtain the non-trivial limit, we assume
that the variance of mutational effects per locus, τ 2, goes to zero
as the number of loci, L, goes to infinity in such a way that
the total variance summed over all loci converges to a constant,
i.e. Lτ 2 → σ 2. In Appendix A.8, we show that samples taken from
a population in this limit can be represented as a sample from a
normal distribution with a randommean. In particular,

Xi
i.i.d.
∼ N


M,

1
2
θσ 2


M ∼ N


0,

1
2
θσ 2


,

whereN (m, s2) represents a normal distributionwithmeanm and
variance s2.

3.4. Simulation

To gain a more intuitive picture of how trait distributions
change due to the underlying mutational kernel and the number
of QTL, we conducted simulations. First, we used ms (Hudson,
2002) to generate coalescent genealogies and then generated and
mappedmutational effects using custom scripts in R (R Core Team,
2013). Specifically, for each segregating site generated in ms, we
drew a mutational effect from the appropriate distribution and
added that effect to every individual who had a derived allele
at that segregating site. We held the sample variance constant
across our simulations; thus, we decreased the variance of the
mutational effects as the number of loci increased. All code is
available at http://github.com/Schraiber/quant_trait_coalescent or
http://dx.doi.org/10.6084/m9.figshare.1337954.

We first assessed the signature left by various mutational
kernels on the sampling distribution by computing the central
moments across simulation replicates. We used a variety of mu-
tational kernels in an attempt to capture different kinds of biolog-
ically relevant behavior: the (symmetric) normal distribution, the
skew-normal distribution (with skewness of 0.1, 0.5, and 0.9), and
the Laplace distribution. We omit power law mutational kernels
from this portion of the analysis because they do not have finite
moments.

We simulated data while varying the number of loci from
L = 2 to L = 256, while holding the sample size constant at
n = 1024. For each mutational kernel and each L, we simulated
2000 replicates. Afterwards, we computed the mean values of
the minimum variance unbiased estimators of the second, third
and fourth central moments (i.e. h2, h3, and h4) across simulation
replicates. We then compared these to their expected values, as
computed in (3). See Fig. 2.

By design, h2 remains constant regardless of the mutational
kernel of L. The normal and Laplace distributions are symmetric,
and produce h3 of 0, regardless of the number of QTL. This result
is consistent with our analytical analysis, which shows that the
trait distribution should be symmetric if the underlyingmutational
kernel is symmetric. However, skew-normal mutational effects
result in non-zero skewness even for traits controlled by over 100
loci if the underlying mutational kernel is sufficiently strongly
skewed. Thus, the rate at which the sampling distribution’s third
central moment, h3, converges to zero is in inverse proportion to
themagnitude of themutational kernel’s skewness. All mutational
effects result in non-zero h4 values when L is small, due to the
randomness of the mutational process. Nonetheless, the Laplace
distribution, the sole leptokurtic kernel in this comparison, is
the slowest of all to converge to the normally distributed limit,
suggesting the importance of the kurtosis of the mutational kernel
for determining the kurtosis of the trait distribution.

We predicted, based on themultivariate stable limit derived for
power law mutational effects, that power law mutational kernels
may result in multimodal sampling distributions, even for traits
controlled by a large number of QTL. We set out to determine
the frequency of multimodality using the dip test (Hartigan and
Hartigan, 1985). Briefly, the dip test computes a statisticmeasuring
departure from unimodality and compares it to a conservative null
distribution. Because the dip test is conservative, we expected to
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Fig. 3. Frequency to reject unimodal sampling distribution. Solid lines report the
frequency the null hypothesis of the dip-test, that the sampling distribution was
unimodal, was rejected for p < 0.05 when evolving under various mutational
kernels. Data were simulated for 1024 sampled individuals and 2000 replicates for
eight values of L, the number of loci. Colors distinguish the mutational kernel and
relevant kernel parameters (if any). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

reject unimodality less than 5% of the time for large L and kernels
without power law behavior. Conversely, for kernels with power
law behavior, we expect a larger fraction of tests to reject the null
hypothesis, even for large numbers of loci.

We complemented the earlier simulated data with data
simulated under three additional,α-stable,mutational kernels.We
chose α ∈ {1.5, 1.7, 1.9} to assess a wide range of heavy tailed
behavior, while ensuring that the distributions retained a finite
mean.

Fig. 3 shows that all mutational kernels result in multimodal
sampling distributions when there are a small number of QTL.
However, trait distributions with α-stable mutational kernels re-
mained multimodal even for large L and the frequency of rejecting
unimodality is proportional to the α value of the mutational ker-
nel. As α decreases, the large effect mutations responsible for mul-
timodality becomemore prominent, and cause a larger proportion
of simulations to reject unimodality. In contrast, mutational ker-
nels without power law behavior become unimodal as L increases.
Nonetheless, we again see that heavier tailed distributions take
longer to converge to the normal limit; in particular, Laplace dis-
tributedmutations converge to unimodalitymore slowly than nor-
mally distributed mutations.

4. Discussion

The natural world is replete with quantitative trait variation,
and understanding the forces governing the evolution of quanti-
tative traits is a central goal of evolutionary biology. The model of
Fisher (1918), which explained how quantitative variation can be
generated byMendelian inheritance, provides an underpinning for
understanding the generation andmaintenance of variation in con-
tinuous characters. A primary assumption of much of this work is
that traits are controlled by a large number of loci and that new
mutations have a very small, symmetric effect on the trait value.

In this work, we introduced a coalescent framework for mod-
eling neutral evolution in quantitative traits. This stands in con-
trast to past work, which has typically taken a forward-in-time
approach based on classical population genetics (but see Whitlock
(1999) who also utilized a coalescent model). Our backward-in-
time, sample-focused approach enabled us to derived an expres-
sion for the joint distribution of the data with arbitrary mutational
effects and numbers of loci. We found that traits governed by a
large number of lociwith small effects arewell-modeled by aGaus-
sian distribution, as expected. However, we saw that with small
numbers of loci, significant departures from normality can be ob-
served.Moreover, for fat-tailed (or power-law)mutational kernels,
there are significant departures from normality (including multi-
modality), even when the number of loci becomes large.
We assessed departure from normality in traits governed by a
small number of loci by exploring the central moments of three
different mutational kernels (normal, skew-normal and Laplace
distributions) both analytically and by simulation. We showed
that although all three mutational kernels converge to a Gaussian
distribution, traits controlled by a small number of loci retain the
signature of their underlyingmutational kernel in their 3rd and 4th
central moments. Hence, it may be possible to reconstruct aspects
of the mutational effect distribution by observing phenotypes
in natural populations. This may be particularly interesting for
analyzing variation in gene expression, because mutational effects
in cismay be strongly skewed (Khaitovich et al., 2005a; Chaix et al.,
2008; Gruber et al., 2012). Our theory suggests that the distribution
of gene expression in a population might therefore be skewed.

We were also interested in the circumstances under which
multi-modal phenotypic distributions can arise. When a trait
has a simple genetic architecture, it is easy to see that there
must be discrete phenotypic clusters, corresponding to groups of
individuals sharing the same mutations. As the number of loci in-
creases, there are more mutational targets (and thus more muta-
tion events), which smooths the distribution, causing the sampling
distribution to converge to the appropriate limiting distribution.
For mutational effects with finite variance, this ultimately results
in a limitingGaussian distribution, consistentwith the central limit
theorem. However, when the mutational kernel is fat-tailed, the
marginal effects of each locus do not vanish as the number of loci
grows. Thus, some clade-specific mutations will always be of large
effect despite the number of loci assumed by the model, resulting
in a multi-modal sampling distribution.

These results show that even under the assumption of neutral-
ity, significant departures from normality are possible and can be
detected in empirical data. It is possible that these deviations from
normality may be conflated with signatures of selection acting on
quantitative variation. Several recent studies have claimed that ev-
idence of non-Gaussianity may be evidence for non-neutral evo-
lution at macroevolutionary time scales. For instance, Khaitovich
et al. (2005a) and Chaix et al. (2008) found that the distribution of
gene expression differences between great apes is strongly posi-
tively skewed. Similarly, Uyeda et al. (2011) argued that there is
a one million year wait between bursts of evolution in the fossil
record and numerous studies have explored non-Gaussian trait di-
vergence in a phylogenetic context (Landis et al., 2013; Eastman
et al., 2013). While it is unlikely that the population genetic model
we developed can be directly applied tomacroevolutionary data of
this sort (Estes and Arnold, 2007), it is important to recognize that
such effects can be due to purely neutral processes.

On shorter time scales, there is significant interest in detecting
non-neutral quantitative trait evolution among closely related
species or populations. One powerful method compares ameasure
of quantitative trait divergence, Qst , to the fixation index, Fst
(McKay and Latta, 2002; Ovaskainen et al., 2011). However,
this requires estimates of breeding values from common-garden
experiments, and may be difficult to achieve. In other cases
(e.g. Lemos et al. (2005)) more phenomenological approaches
are taken, by comparing within and between species phenotypic
diversity. The null distributions of these approaches typically rely
on assumptions of the infinitesimal model, which we have shown
may be violated due to mutations of large effect and/or loci
with relatively simple genetic bases. To address these issues and
leverage the abundance of modern quantitative trait data, Berg
and Coop (2014) developed a method that explicitly uses breeding
values estimated from quantitative trait mapping studies. When
such effect size estimates are unavailable, it may be possible to use
our formalism to develop robust null models to detect selection.

This framework, which provides a generative model based
on an explicit characterization of the underlying mutational
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kernel, maybe useful for inferring parameters of mutational effect
distributions from phenotypes sampled in natural populations.
In particular, a large number of studies are now quantifying
thousands of phenotypes across a large number of individuals
by assaying molecular phenotypes such as gene expression (e.g
Lappalainen et al. (2013)) or chromatin accessibility (e.g Degner
et al. (2012)). Because these traits are thought to evolve subject to
relatively fewQTLof relatively large effect,webelieve that itwill be
possible to use ourmodel tomake inferences about themutational
effects that shape phenotypic variation at the molecular level.

Our coalescent approach can be extended in several ways.
Notably, we consider only haploid populations. In principle, an
extension to diploid individuals is straight-forward using the result
of Möhle (1998) that diploid, diecious populations of size N are
readily modeled by pairing random chromosomes from a haploid
population of size 2N . To incorporate diploidy, wewould also need
to incorporate a model of dominance, of which several exist in the
literature (e.g. the model of independent dominance of Lynch and
Hill (1986)).

From the point of view of the coalescent process, it is straight-
forward to apply our model to populations that have undergone
complex demographic histories. This is because the dynamics of
a coalescent under population size fluctuations and population
structure are well known. Moreover, we explored only unlinked,
neutral loci and it may be possible to obtain some analytical re-
sults for linked loci and/or weak natural selection by using the
ancestral recombination graph and ancestral selection graph, re-
spectively.While analytical results are difficultwithin these frame-
works, we believe that they can be used to perform simple simu-
lations of quantitative traits evolving in complex scenarios, thus
enabling Approximate Bayesian Computation.
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Appendix. Mathematical derivations

A.1. Compound Poisson processes

To obtain the probability of the data under this model, wemust
be able to compute the probability of the change in phenotype
along a branch of the tree. Unfortunately, except for very simple
mutational models, this probability is impossible to compute
analytically. Instead, we compute the characteristic function of the
change along a branch.

Using standard results for compound Poisson processes (King-
man, 1992), we see that the characteristic function of the change
along a branch of length t (in coalescent units) is

ϕt(k) = e
θ
2 t(ψ(k)−1) (4)

where ψ is the characteristic function of the mutational effect
distribution.
A.2. The phenotype at the root of the sample genealogy and the
subsequent evolution within the sample are subindependent

Note that
λn(k) = E(eik

TX)

= E(ei(k1X1+k2X2+···+knXn))

= E(ei(k1(R+E1)+k2(R+E2)+···+kn(R+En)))

where R is the phenotype at the root of the sample genealogy and
Eu is the subsequent evolution leading to lineage u in the sample.
So,
E(ei(k1(R+E1)+k2(R+E2)+···+kn(R+En)))

= ER(E(ei(k1(R+E1)+k2(R+E2)+···+kn(R+En))|R))

= ER(ei(k1+k2+···+kn)RE(ei(k1E1+k2E2+···+knEn)|R))

= E(ei(k1+k2+···+kn)R)E(ei(k1E1+k2E2+···+knEn))

where the last line follows by independent and stationary
increments of the compound Poisson process. Thus, R and
(E1, E2, . . . , En) subindependent, and hence their joint character-
istic function is the product of their characteristic functions.

A.3. Proof of recursive formula for the characteristic function

In this section we use X to indicate the vector of trait value
conditional on the common ancestor of the sample having trait
value 0. First, we condition on the state at the first coalescence
(going back in time). The state consists of three components:
(1) which pair of individuals coalesce, (u, v), (2) the time of the
coalescent event, Tc , and (3) the trait value in each lineage at that
time, X′ (note that, given (u, v), we have that X ′

u = X ′
v , since those

two lineages have coalesced and hence had the same trait value at
the time of coalescence). Then,

E(eik
TX) = E(u,v),X′,Tc


E

eik

TX
|(u, v),X′, Tc


=

2
n(n − 1)


u<v

EX′,Tc


E

eik

TX
|(u, v),X′, Tc


=

2
n(n − 1)


u<v

EX′,Tc


E

eik

T (X′
+Y(Tc ))|(u, v),X′, Tc


=

2
n(n − 1)


u<v

EX′,Tc


eik

TX′

E

eik

T Y(Tc )|Tc


(5)

where Y(t) = (Y1(t), Y2(t), . . . , Yn(t)) is the vector accounting
for the evolution on each lineage that occurs during time t . The
second line follows by the fact that each pair is equally likely to
coalesce (with probability

n
2

−1) and the third line by independent
increments of a compound Poisson process.

Now, we compute the internal expectation going forward
in time. Noticing that E(eik

T Y(Tc )|Tc) is simply the characteristic
function of a compound Poisson process run for length Tc , we see
from (4) that

E

eik

T Y(Tc )|Tc


= exp


θ

2
Tc


n

i=1

ψ(ki)− n


.

Because Tc and X′ are independent, we can integrate over Tc
analytically in the outer expectation. The distribution of the time to
the first coalescent event in a sample of size n is Exponential with
rate

n
2


, hence,

ETc


exp


θ

2
Tc


n

i=1

ψ(ki)− n



=
n(n − 1)

n(n − 1)− θ


n

i=1
ψ(ki)− n

 .
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Plugging this result into (5) results in

E

eik

TX


=
2

n(n − 1)− θ


n

i=1
ψ(ki)− n


u<v

EX′


eik

TX′

,

but since X′ is simply the result of the same process where two of
the entries are identical, we obtain the recursive formula (1) with
φn = E


eik

TX

when X is a vector of size n.

To initialize the recursion, we must compute the characteristic
function for a sample of size 2. This is

φ2(k) =
2

2 − θ(ψ(k1)+ ψ(k2)− 2)
. (6)

A.4. The phenotype at the root of the sample genealogy

First, we define∆ to be the time between when the sample ge-
nealogy finds a common ancestor andwhen the population geneal-
ogy finds a common ancestor. Then, we note that, conditional on
∆, the characteristic function of the phenotype at the root of the
sample genealogy is

e
θ
2 (ψ(k)−1)∆,

by using Eq. (4). Thus, the after integrating over ∆, the desired
quantity ismoment generating function of∆, defined by

M(z) = E(ez∆)

evaluated at z =
θ
2 (ψ(k)− 1).

We compute M(z) by conditioning on how many lineages are
left in the population genealogy when the sample reaches its most
recent common ancestor. To do this, we make use of a result of
Saunders et al. (1984),

P(u lineages left in population|sample coalesced)

= n!(n − 1)
u!

(n + u)!
.

Given that u lineages are left in the population when the sample
reaches itsmost recent common ancestor, the remaining time until
the whole population reaches its common ancestor is simply the
time it takes for a coalescent startedwith u to reach itsmost recent
common ancestor, Cu. Thus by conditioning on the number of
lineages left in the population and using the result from Saunders
et al. (1984),

M(z) = E(ez∆)
= Eu(E(ez∆|u lineages left when sample coalesces))

=

∞
u=1

E(ezCu)n!(n − 1)
u!

(n + u)!

=

∞
u=1

u
v=2

v(v − 1)
v(v − 1)− 2z

n!(n − 1)
u!

(n + u)!

where the final line follows by recognizing that Cu is the sum
of u − 1 independent exponential random variables with meansu
2


,
u−1

2


, . . . ,

2
2


. Substituting θ

2 (ψ(k)−1) for z yields the desired
result.

A.5. Computing sample central moments

While it is difficult to compute the expectation of any sample
central moments for a particular sample, it is possible to average
over replicate populations to compute expectations over replicate
samples. We first begin by defining the h-statistics, which are
the unique minimum variance unbiased estimators of the central
moments (Halmos et al., 1946). In particular, letting Xi be the
phenotype of individual i in a sample of size n (n.b. that these labels
are arbitrary because individuals are exchangeable), and putting
Sp =

n
i=1 X

p
i ,

h2 =
nS2 − S21
(n − 1)n

h3 =
2S31 − 3nS1S2 + n2S3
(n − 2)(n − 1)n

h4 =
6nS21S2 + 3(3 − 2n)S22 − 4(n2

− 2n + 3)S1S3 + (n3
− 2n2

+ 3n)S4 − 3S41
(n − 3)(n − 2)(n − 1)n

.

We now compute expectations over these quantities by com-
puting expectations over the products of the Sp. Because the pheno-
types of the samples are correlated, this results in formulas that are
different from the case of independent and identically distributed
random variables. For instance,

E(S21) = E

 n
i=1

Xi

2


= E


n

i=1

n
j=1

XiXj



= E


n

i=1

X2
i +


i≠j

XiXj


= nE(X2

1 )+ n(n − 1)E(X1X2).

Computing similar formulas as required and substituting into
the definitions of the h-statistics results in

E(h2) = E(X2
1 )− E(X1X2)

E(h3) = E(X3
1 )+ 2E(X1X2X3)− 3E(X2

1X2)

E(h4) = E(X4
1 )+ 6E(X2

1X2X3)− 4E(X3
1X2)− 3E(X1X2X3X4),

where the expectations on the right hand sides are over the
correlated phenotypes in the sample. It is possible to compute these
expectations by taking derivatives of the characteristic function
(1). We demonstrate this for the case of h2; all other results follow
similarly.

First, note that because all of these moments are central mo-
ments, the phenotype at the root of the sample genealogy will al-
ways cancel out and we only are concerned with the characteristic
function relating to the evolution within the sample (1). Next, us-
ing the fact that the characteristic function of a sumof randomvari-
ables is the product of their characteristic functions, let φ(L)n (k) =

φn(k)L, i.e. the characteristic function of a trait governed by L iden-
tical loci. A basic property of the characteristic function is that

E(Xp1
1 Xp2

2 · · · Xpn
n )

= (−i)

u

pu ∂


u

pu

∂kp11 ∂k
p2
2 · · · ∂kpnn

φ(L)n (k)


k1=k2=···=kn=0

.

So,

E(X2
1 ) = (−i)2

∂2

∂k21
φ(L)n (k)


k1=k2=···=kn=0

= Cn +
n − 1
n

θLm2

and

E(X1X2) = (−i)2
∂2

∂k1∂k2
φ(L)n (k)


k1=k2=···=kn=0

= Cn +
n − 2
2n

θLm2,
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where Cn is a term that depends on n and is identical in the two
computations, and m2 = −ψ ′′(0) is the second moment of the
mutational effect kernel. Finally,

E(h2) = E(X2
1 )− E(X1X2)

= Cn +
n − 1
n

θLm2 −


Cn +

n − 2
2n

θLm2


=

1
2
θLm2.

A.6. Derivation of multivariate stable limit for sample distribution

Recall that a random variable X is said to have a fat-tailed (or
power-law) distribution if

P(X > x) ∼ κx−α (7)

for large x and some κ > 0. As is typical in the literature,we reserve
the term ‘‘fat-tailed’’ for distributions with α ∈ (0, 2).

To obtain an appropriate scaling limit, we assume that there is
a parameter t , related to the parameter κ in (7) by

t = κ
π

sin(απ/2)Γ (α)α
, (8)

such that Lt → s as n → ∞. Note that s1/α is proportional to the
scale parameter of the resulting limit distribution.

We provide a heuristic derivation, rather than a rigorous proof.
First, we argue by induction that the (per locus) characteristic
function for a sample of size n is

φ̃n(k) ∼ 1 −
θs
L

 
j∈P ∗(k)

cn,|j|


z∈j

z


α

for large L, whereP ∗(k) is the power set of the elements ink, except
the set {k1, k2, . . . , kn}, and cn,|j| is a combinatorial constant that
depends only on the sample size n and |j|, the size of the set j.

Note that for n = 2, this can be seen by observing that for
large L, the characteristic function of a fat-tailed distribution is
asymptotically

ψ(k) ∼ 1 −
s
L
|k|

≡ ψ̃.

Thus,

φ2(k) ∼ 1 −
θ

2
s
L
(|k1|α + |k2|α)

≡ φ̃2.

Now, assume that the formula holds for φ̃n−1. Using the
recursion (1), we have

φn(k) ∼
1n

2


−

θ
2


n

u=1
ψ̃(ku)− n


u<v

ψ̃n−1(k(u,v))

=

n
2


−

θs
L

 
j∈P ∗(k)

c̃n,|j|

z∈j
z


α

n
2


+

θs
2L


n

u=1
|ku|α

 .

The second line follows from plugging ψ̃ and φ̃, and c̃n,|j|
arises by summing over the appropriate terms coming from all
characteristic functions in the sum.Again looking for an asymptotic
for large L, we see that

n
2


−

θs
L

 
j∈P ∗(k)

c̃n,|j|

z∈j
z


α

n
2


+

θs
2L


n

u=1
|ku|α


∼ 1 −

θsn
2


L

 
j∈P ∗(k)

c̃n,|j|


z∈j

z


α

+
1
2

n
u=1

|ku|α


= 1 −
θs
L

 
j∈P ∗(k)

cn,|j|


z∈j

z


α

= φ̃n(k).

Finally, we note that by raising φ̃n to the Lth power, and taking
the limit as L → ∞, we obtain the log characteristic function

logΦn(k) = −θs

 
j∈P ∗(k)

cn,|j|


z∈j

z


α
, (9)

where all terms are defined as before.
The characteristic function in (9) can be recognized to be that

of a multivariate α-stable distribution (Press, 1972). These multi-
variate distributions are fat-tailed generalizations of the familiar
multivariate normal distribution, and this limit corresponds to a
generalizedmultivariate central limit theorem for sums of random
vectors with fat-tailed distributions.

A.7. Limiting distribution of the phenotype at the root of the sample
genealogy

Again, we proceed heuristically rather than rigorously. First,
note that for large L,

v(v − 1)
v(v − 1)− θ(ψ(k)− 1)

∼ 1 −
θs

Lv(v − 1)
|k|α

so that
u
v=2


1 −

θs
Lv(v − 1)

|k|α


∼ 1 −
u − 1
u

s
L
θ |k|α

for large L. Thus,

ρn(k) ∼ n!(n − 1)
∞
u=1


1 −

u − 1
u

s
L
θ |k|α


u!

(n + u)!

= 1 −
sθ
Ln

|k|α.

So, by definition of the exponential function, we have that

Rn(k) = lim
L→∞

ρn(k)L

= e−
sθ
n |k|α , (10)

which is the characteristic function of a univariate α-stable
distribution, arising from the fact that the phenotype at the root
of the sample genealogy is itself a limit of a sum of random
variables. Note that as n → ∞ (i.e. the sample becomes the whole
population), R(k) → 1, because the root of the sample genealogy
is the same as the root of the population genealogy and the root
value has been specified to be equal to 0.
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A.8. Multivariate Gaussian limits

For the case where the mutation distribution is not fat-
tailed, we can use the multivariate central limit theorem to more
efficiently derive the limiting distribution. The appropriate scaling
in this case is to assume that if τ 2 is the variance of the mutation
effect kernel, then Lτ 2 → σ 2 as L → ∞.

To apply themultivariate central limit theorem,wemust derive
the pairwise covariances between samples. While the required
covariances could be computed by taking derivatives of the
characteristic function, it is more instructive to compute these
moments directly. For simplicity, we assume that the mutation
effect distribution has mean 0 and variance τ 2.

Assume that the population genealogy at a single locus, G,
is fixed. Noting that the variance per unit time accrued by the
mutational process is θ/2τ 2 and using the rules for calculating
covariance structure on a phylogeny, it is easy to see that for
samples i and jwe have

Cov(Xi, Xj|G) =


θ

2
τ 2T if i = j

θ

2
τ 2(T − Tij) if i ≠ j

where T is the height of G and Tij is the height of the most recent
common ancestor of samples i and j. We can then use the law of
total covariance,

Cov(Xi, Xj) = E(Cov(Xi, Xj|G))+ Cov(E(Xi|G),E(Xj|G))

to see that

Cov(Xi, Xj) =


θτ 2 if i = j
1
2
θτ 2 if i ≠ j.

This arises because E(T ) = 2 and E(Tij) = 1.
Hence, as the number of loci increases to infinity in such a

way that Lτ 2 → σ 2, the sampling distribution converges to
a multivariate normal distribution with mean 0 and variance
covariance matrixΣ having elements

Σij =


θσ 2 if i = j
1
2
θσ 2 if i ≠ j.

Because the pairwise covariances are equal, the random vector X
is an exchangeable Gaussian random vector. Hence, using well-
known facts about the representation of exchangeable Gaussian
random vectors, one arrives at the representation in the main
text.
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